首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxygen ion conductivity of zirconia-based solid electrolytes doped with 8 mol% Y2O3–ZrO2 (YSZ) and 9 mol% MgO–ZrO2 (Mg-PSZ) at high temperature was investigated in terms of their thermal behavior and structural changes. At room temperature, YSZ showed a single phase with a fluorite cubic structure, whereas Mg-PSZ had a mixture of cubic, tetragonal and some monoclinic phases. YSZ exhibited higher ionic conductivity than Mg-PSZ at temperatures from 600 °C to 1250 °C because of the existence of the single cubic structure and low activation energy. A considerable increase in the conductivity with increasing temperature was observed in Mg-PSZ, which showed higher ionic conductivity than YSZ within the higher temperature range of 1300–1500 °C. A monoclinic-to-tetragonal phase transformation was found in Mg-PSZ and the lattice parameter of the cubic phase increased at 1200 °C. The phase transformation and the large lattice free volume contributed to the significant enhancement of the ionic conductivity of Mg-PSZ at high temperatures.  相似文献   

2.
β-SiAlON was synthesized from select zeolite Y compositions with different Si/Al ratios by carbothermal reduction–nitridation (CRN), and the correlation between the starting compositions and products was investigated. The carbon content in all of the zeolite samples was fixed at 1.2 times the required stoichiometric value. Zeolite–carbon mixtures were placed in a carbon boat and fired in a furnace at 1300 °C for 0 min, and 1450 °C for 0, 120 min in a N2 flow of 0.5 l/min. The main phase in each of the samples fired at 1450 °C for 120 min was determined from XRD results as β-SiAlON. It was also found that the ratio of β-SiAlON to minor phases such as α-Si3N4 and Si2N2O is typically higher in samples prepared from zeolites rather than from silica–alumina mixtures of the same compositions. This indicates that zeolites are ideal raw materials for the CRN synthesis of high purity β-SiAlONs by CRN with various z values.  相似文献   

3.
《Ceramics International》2017,43(16):13653-13660
The effects of a Cu-based additive and nano-Gd-doped ceria (GDC) sol on the sintering temperature for the construction of solid oxide cells (SOCs) were investigated. A GDC buffer layer with 0.25–2 mol% CuO as a sintering aid was prepared by reacting GDC powder and a CuN2O6 solution, followed by heating at 600 °C. The sintering of the CuO-added GDC powder was optimized by investigating linear shrinkage, microstructure, grain size, ionic conductivity, and activation energy at temperatures ranging from 1000 to 1400 °C. The sintering temperature of the CuO–GDC buffer layer was decreased from 1400 °C to 1100 °C by adding the CuO sintering aid at levels exceeding 0.25 mol%. The ionic conductivity of the CuO–GDC electrolyte was maximized at 0.5 mol% CuO. However, the addition of CuO did not significantly affect the activation energy of the GDC buffer layer. Buffer layers with CuO-added GDC or nano-GDC sol-infiltrated GDC were fabricated and tested in co-sintering (1050 °C, air) with La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF). In addition, SOC tests were performed using button cells (active area: 1 cm2) and five-cell (active area: 30 cm2/cell) stacks. The button cell exhibited the maximum power density of 0.89 W cm−2 in solid oxide fuel cell (SOFC) mode. The stack demonstrated more than 1000 h of operation stability in solid oxide electrolysis cell (SOEC) mode (decay rate: 0.004%/kh).  相似文献   

4.
Si3N4–TiN composites were successfully fabricated via planetary ball milling of 70 mass% Si3N4 and 30 mass% Ti powders, followed by spark plasma sintering (SPS) at 1250–1350 °C. The sintering mechanism for SPS was a hybrid of dissolution–reprecipitation and viscous flow. The electrical resistivity decreased with increasing sintering temperature up to a minimum at 1250 °C and then increased with the increasing sintering temperature. The composites prepared by SPS at 1250–1350 °C could be easily machined by electrical discharge machining. Composite prepared by SPS at 1300 °C showed a high hardness (17.78 GPa) and a good machinability.  相似文献   

5.
Microwave dielectric properties of corundum-structured Mg4Ta2O9 ceramics were investigated as a function of sintering temperatures by an aqueous sol–gel process. Crystal structure and microstructure were examined by X-ray diffraction (XRD) technique and field emission scanning electron microscopy (FE-SEM). Sintering characteristics and microwave dielectric properties of Mg4Ta2O9 ceramics were studied as a function of sintering temperature from 1250 °C to 1450 °C. With increasing sintering temperature, the density, εr and Qf values increased, saturating at 1300 °C with excellent microwave properties of εr=11.9, Qf=195,000 GHz and τf=?47 ppm/°C. Evaluation of dielectric properties of Mg4Ta2O9 ceramics were also analyzed by means of first principle calculation method and ionic polarizability theory.  相似文献   

6.
For low-temperature sintering, mixtures of AlN powder doped with 3.53 mass% Y2O3 and 0–2.0 mass% CaO as sintering additives were pulverized and dispersed in a vertical super-fine grinding mill with very small ZrO2 beads. The particle sizes achieved ranged between 50 and 100 nm after grinding for 90 min. The mixtures were then fired at 1000–1500 °C for 0–6 h under nitrogen gas pressure of 0.1 MPa. All nano-sized powders showed pronounced densification from 1300 °C as revealed by shrinkage measurement. The larger amounts of sintering additives enhanced AlN sintering at lower temperatures. Densified AlN ceramics with very fine and uniform grains of 0.3–0.4 μm were obtained at a firing temperature of 1500 °C for 6 h.  相似文献   

7.
A considerable reduction (≥250 °C) in the sintering temperature, enhancement of the sintering density, and a slight improvement of the electrical properties, can be achieved by using bismuth oxide in the range of 0.2 to 2 wt.%, as a sintering aid for gadolinia-doped ceria (GDC) ceramic electrolytes. Dilatometric experiment (CHR) and SEM observations indicate that a liquid phase-assisting sintering mechanism contributes to the improvement in sintering density for bismuth oxide concentrations exceeding 0.5 wt.%. The addition of small amount of Bi2O3 ≤0.5 wt.% also results in the achievement of highly dense ceramic bodies (≥99% of theoretical density) after sintering at 1200 °C for 4 h, which indicates that the addition of Bi2O3 to gadolinia-doped ceria promoted the sintering process by a cooperating volume diffusion-liquid phase-assisting mechanism. Based on the lattice constant data, the solid solubility limit of Bi2O3 in gadolinia-ceria is, probably, lower than 1.0 wt.%. Grain size also increased with increasing Bi2O3 content up to 0.5 wt.% and then it decreased with further addition of Bi2O3. The addition of the smaller amounts of bismuth oxide, i.e., ≤1.0 wt.% Bi2O3 slightly enhanced the total ionic electrical conductivity of the gadolinia-doped ceria electrolyte. The sintering temperature strongly influenced the electrical conductivity of the doped-GDC ceramics. The best sample was that containing 1.0 wt.% Bi2O3 sintered at 1400 °C for 2 h which had an ionic electrical conductivity of 4 S m−1 at 700 °C, and an activation energy of 0.58 eV for the oxide-ion conduction process in air.  相似文献   

8.
The sintering behaviour of a cation-deficient perovskite, Ba5Nb4O15, is investigated in the present study. The highest density can be achieved through pressureless sintering at 1250 °C is only 93%. A further increase in sintering temperature results in a decrease in density; for example, the density is only 82% after sintering at 1435 °C. The density decrease, de-sintering, can be related to the formation of abnormal grains ( > 1250 °C) and the reduction of niobium ions ( > 1400 °C). The permittivity of sintered Ba5Nb4O15 specimen shows strong dependence on density; however, the quality factor (Qxf) increases to 45,000 with the increase of sintering temperature. The increase in quality factor is attributed to the ordering of cations in the perovskite structure.  相似文献   

9.
《Ceramics International》2015,41(4):5836-5842
Sm- and Gd-doped ceria electrolytes Ce0.9Gd0.1O1.95 (GDC) and Ce0.9Sm0.1O1.95 (SDC) were prepared by using the Pechini method. The microstructural and physical properties of the samples were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetry/differential thermal analysis (TG/DTA) and Fourier Transform Infrared Spectroscopy (FTIR). The TG/DTA and XRD results indicated that a single-phase fluorite structure formed at a relatively low calcination temperature, 400 °C. The XRD patterns of the samples revealed that the crystallization of the SDC powders was superior than that of the GDC powders at 400 °C. The sintering behavior and ionic conductivity of the GDC and SDC pellets were also investigated. The sintering results showed that the SDC samples were found to have higher sinterability than the GDC samples at a relatively low sintering temperature, 1300 °C, a significantly lower temperature than 1650 °C, which is required for ceria solid electrolytes prepared by solid state techniques. The impedance spectroscopy results revealed that SDC has a higher ionic conductivity compared to GDC.  相似文献   

10.
《Ceramics International》2007,33(4):515-520
Microporous alumina membrane substrate in tubular and planar configurations have been prepared by gelcasting of alumina powder slurry using high amount of urea–formaldehyde as gelling agent followed by humidity controlled drying, binder removal and sintering of the gelled bodies. Porosity of the substrate samples sintered at 1350 °C was more than 70% as measured by mercury porosimeter. More than 51% porosity could be retained even after sintering of the samples at 1450 °C. Average pores size of the membrane substrate samples sintered at temperature in the range from 1250 to 1550 °C varied between 0.42 and 0.56 with a maximum at 1350 °C. More uniform pores were observed in sample sintered at 1450 °C. Urea-formaldehyde polymer present in the gelcast body acts as template for micropores.  相似文献   

11.
《Ceramics International》2017,43(4):3647-3653
This study investigated the effect of sintering temperature on the microstructure and mechanical properties of dental zirconia-toughened alumina (ZTA) machinable ceramics. Six groups of gelcast ZTA ceramic samples sintered at temperatures between 1100 °C and 1450 °C were prepared. The microstructure was investigated by mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. The mechanical properties were characterized by flexural strength, fracture toughness, Vickers hardness, and machinability. Overall, with increasing temperature, the relative density, flexural strength, fracture toughness, and Vickers hardness values increased and more tetragonal ZrO2 transformed into monoclinic ZrO2; on the other hand, the porosity and pore size decreased. Significantly lower brittleness indexes were observed in groups sintered below 1300 °C, and the lowest values were observed at 1200 °C. The highest flexural strength and fracture toughness of ceramics reached 348.27 MPa and 5.23 MPa m1/2 when sintered at 1450 °C, respectively. By considering the various properties of gelcast ZTA that varied with the sintering temperature, the optimal temperature for excellent machinability was determined to be approximately 1200–1250 °C, and in this range, a low brittleness index and moderate strength of 0.74–1.19 µm−1/2 and 46.89–120.15 MPa, respectively, were realized.  相似文献   

12.
《Ceramics International》2017,43(14):10934-10938
The ionic conductivity and the crystalline structure of ZrO2−10 mol% Sc2O3- x mol% Nb2O5 solid electrolytes were investigated for x=0.25, 0.5 and 1. Dense specimens with relative densities higher than 95% were prepared by solid state reaction and sintered at 1500 °C for 5 h. Full stabilization of the cubic structure at room temperature was obtained for compounds with x=0.5 and 1, whereas the cubic and rhombohedric structures coexist for x=0.25. The highest ionic conductivity in codoped system was found for specimen containing 0.5 mol% niobium pentoxide, with the same order of magnitude as that of the parent solid electrolyte (zirconia-10 mol% scandia) in the high temperature range (above 600 °C). Preliminary investigation on phase stability shows that the isothermal conductivity of the new solid electrolyte remained constant up to 100 h at 600 °C. Niobium pentoxide addition was found to improve the overall ionic conductivity of zirconia-scandia solid electrolyte.  相似文献   

13.
《Ceramics International》2017,43(18):16048-16054
Samples of SiC+10 vol%(Al2O3+Dy2O3) and SiC+10 vol%(Al2O3+Yb2O3) mixtures were obtained by cold isostatic pressing and sintered for one hour in a dilatometer at 1800 °C and 1900 °C, applying heating rates of 10, 20 and 30 °C/min. The results of the complete sintering cycle indicated that the heating rates do not significantly influence the shrinkage, but that temperature and total sintering time may be relevant factors. The compacts sintered at 1900 °C shrank on average 9% more than those sintered at 1800 °C, and it was found that the sintering time can be reduced by 40–50% at faster heating rates. The maximum shrinkage rates occurred at temperatures lower than those of the sintering thresholds for the two mixtures, two temperatures and three heating rates. It was also found that after formation of the liquid, the mechanisms of particle rearrangement and solution-precipitation were not as fast as reported in the literature, even at high heating rates, for example 30 °C/min, but they are responsible for much of the shrinkage occurring throughout the sintering cycle.  相似文献   

14.
In order to obtain mullite/zirconia composites, mixtures of aluminum dross and zircon were sintered. Aluminum dross was collected and purified by a milling, sieving and washing process. Stoichiometric mixtures of aluminum dross and zircon were sintered at several temperatures (1400, 1450 and 1500 °C) for several periods of time (2, 4 and 6 h). After the purifying treatment the dross contained mainly Al2O3, AlN, MgAl2O4, SiO2 and metallic Al. A homogeneous mullite matrix with small zirconia particles was obtained by sintering the aluminum dross–zircon samples at 1500 °C for 6 h.  相似文献   

15.
Varistors based on SnO2 have attracted increasing interest in recent years. However, the combined effect of CoO–MnO on SnO2 ceramics is still unclear. In this study, the non-Ohmic behaviour of the 98.95 mol%SnO2–0.5 mol%CoO–0.5 mol%MnO–0.05 mol%Nb2O5 system, the microstructures and the influence of sintering temperature were investigated. The samples were prepared by the mixed oxide route, and were sintered at temperatures in the range 1250–1450 °C. SEM observation and EDS analysis revealed that the ceramics have a two-phase microstructure comprising SnO2 primary grains and a Mn, Co rich secondary phase of small particles. The sintered density of the samples increased with the increase in sintering temperature. The maximum non-linear coefficient (α = 10) was obtained at a sintering temperature of 1350 °C.  相似文献   

16.
《Ceramics International》2017,43(2):1809-1818
The densification and biocompatibility of sintered 3.0 mol% yttria-tetragonal zirconia polycrystal (3Y-TZP) ceramics, with X wt% Fe2O3 and 5.0 wt% mica powders (denoted by 3Y-TZP: X-5.0 wt% mica) have been studied. When the pellets of 3Y-TZP: X-5.0 wt% mica were sintered at 1300 °C for 1 h, the relative shrinkage increases from 19.20–19.43% with the X increased from 0.3 to 1.0. The relative shrinkage of pellets containing 1.0 wt% Fe2O3 (X=1.0) increased from 19.43–19.59% when sintering temperatures were raised from 1300 °C to 1450 °C. X-ray diffraction results show that the pellets of 3Y-TZP: X-5.0 wt% mica sintered at 1400 °C for 1 h only contained single phase of tetragonal ZrO2 (t-ZrO2). When the sintering temperature was higher than 1400 °C, the Vickers microhardness was greatest in the pellets with X=0.5. Within pellets with the same Fe2O3 content, the dominant wavelength (λd) was only slightly different for pellets sintered at 1300 °C and those sintered at 1450 °C. The results of the materials were evaluated in vitro cytotoxicity tests reveals that the powders and sintered pellets are safe materials. The oral mucosa irritation tests did not find erythema or histopathological change including normal epithelium, and was free from leucocyte infiltration, vascular congestion and oedema.  相似文献   

17.
Heterogeneous precipitation method has been used to produce 5 vol% SiC–Al2O3 powder, from aqueous suspension of nano-SiC, aqueous solution of aluminium chloride and ammonia. The resulting gel was calcined at 700°C. Nano-SiC–Al2O3 composites were densified using spark plasma sintering (SPS) process by heating to a sintering temperature at 1350, 1400, 1450, 1500 and 1550°C, at a heating rate of 600 °/min, with no holding time, and then fast cooling to 600°C within 2–3 min. High density composites could be achieved at lower sintering temperatures by SPS, as compared with that by hot-press sintering process. Bending strength of 5 vol% SiC–Al2O3 densified by SPS at 1450°C reached as high as 1000 MPa. Microstructure studies found that the nano-SiC particles were mainly located within the Al2O3 grains and the fracture mode of the nanocomposites was mainly transgranular fracture.  相似文献   

18.
Aluminum nitride (AlN) ceramics with the concurrent addition of CaZrO3 and Y2O3 were sintered at 1450-1700 °C. The degree of densification, microstructure, flexural strength, and thermal conductivity of the resulting ceramics were evaluated with respect to their composition and sintering temperature. Specimens prepared using both additives could be sintered to almost full density at relatively low temperature (3 h at 1550 °C under nitrogen at ambient pressure); grain growth was suppressed by grain-boundary pinning, and high flexural strength over 630 MPa could be obtained. With two-step sintering process, the morphology of second phase was changed from interconnected structure to isolated structure; this two-step process limited grain growth and increased thermal conductivity. The highest thermal conductivity (156 Wm−1 K−1) was achieved by two-step sintering, and the ceramic showed moderate flexural strength (560 MPa).  相似文献   

19.
High density uranium dioxide (UO2) pellets with grain sizes between 0.9 μm and 9 μm were produced by spark plasma sintering (SPS). A systematic study was performed by varying the sintering temperature between 750 °C and 1450 °C and hold time between 0.5 min and 20 min to obtain UO2 pellets with a range of theoretical densities (TD) and grain sizes. The microstructure development in terms of grain size, density and porosity distribution was investigated. The oxygen/uranium (O/U) ratio of the resulting pellets was found to decrease after SPS. The thermal conductivity of UO2 pellets increased with the theoretical density but the grain size in the investigated range had no significant influence. The measured thermal conductivity values up to 900 °C were consistent with the reported literature for conventionally sintered UO2 pellets. The benefits of using SPS over the conventional sintering of UO2 are summarized.  相似文献   

20.
Na3Si2Zr1.88Y0.12PO11.94 was for the first time synthesised using mechanically activated mixtures of (ZrO2)0.97(Y2O3)0.03, Na3PO4·12H2O and SiO2 aiming to lower the sintering temperature thus improving chemical homogeneity. The best result was obtained with powder mixtures activated in Teflon containers with partial amorphisation of the reactants attained after milling for 70 h at a maximum of 300 rpm, without significant contamination. The microstructure consists of 300–500 nm agglomerates of smaller grains with size in the range 50–100 nm. Dense, single phase ceramics with submicrometric grain size were obtained from the activated mixture after sintering at 1050 °C for 10 h. The ionic conductivity of these ceramics is 2.5×10−3 S cm−1 at room temperature, and 0.24 S cm−1 at 300 °C. These values are higher than those obtained with non-activated solid state reaction samples and amongst the highest reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号