首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study describes the preparation, surface imaging and tribological properties of titania coatings modified by zirconia nanoparticles agglomerated in the form of island-like structures on the titania surface. Titania coatings and titania coatings with embedded zirconia nanoparticles were prepared by the sol–gel spin coating process on silicon wafers. After deposition the coatings were heat-treated at 500 °C or 1000 °C. The natural tendency of nanoparticles to form agglomerates was used to build separated island-like structures unevenly distributed over the titania surface having the size of 1.0–1.2 μm. Surface characterization of coatings before and after frictional tests was performed by atomic force microscopy (AFM) and optical microscopy. Zirconia nanoparticles were imaged with the use of transmission electron microscopy (TEM). The tribological properties were evaluated with the use of microtribometer operating in ambient air at technical dry friction conditions under normal load of 80 mN. It was found that nanocomposite coatings exhibit lower coefficient of friction (CoF) and considerably lower wear compared to titania coating without nanoparticles. The lowering of CoF is about 40% for coatings heated at 500 °C and 33% for the coatings heated at 1000 °C. For nanocomposites the wear stability was enhanced by a factor of 100 as compared to pure titania coatings. We claim that enhanced tribological properties are closely related to the reduction of the real contact area, lowering of the adhesive forces in frictional contacts and increasing of the composite hardness. The changes in materials composition in frictional contact has secondary effect.  相似文献   

2.
A SiTiOC ceramic coating with outstanding tribological performance was prepared by laser scanning the organosilicon coating with different laser power. The composition and structure of the obtained SiTiOC ceramic coatings were analyzed by scanning electron microscopy (SEM), infrared spectroscopy (FTIR), Raman spectra, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscope (TEM). The tribological performance of the coatings was studied using a multi-functional reciprocating friction and wear tester. The results showed that the chemical structure (chemical bonding) of the coatings prepared at 0 W, 350 W, and 500 W laser powers included Si-O-Si, Si-C, and TiO2, while that prepared at 800 W was mainly composed of amorphous SiO2, indicating that the coating had higher ceramization. The SiTiOC ceramic coatings prepared by the present process effectively reduced the friction coefficient and wear volume of the steel substrate, which indicated that they had good anti-friction and wear resistance properties.  相似文献   

3.
《Ceramics International》2017,43(18):16548-16554
Titanium carbonitride (TiCN) coatings were successfully fabricated by reactive plasma spraying (RPS) from agglomerated Ti-graphite feedstock. The effect of Ti particle size on the microstructure and phase composition of plasma sprayed TiCN coatings was investigated. The Vickers microhardness of coatings was measured by a Microhardness Test and the corresponding Weibull distribution were also analyzed. In addition, a pin-on-disk tribometer was employed to determine the trobological properties of coatings. Results show that all the coatings consist of TiCxN1−x (0 ≤ x ≤1) and minor Ti2O phases, and the amount of Ti2O increases with the increase of Ti particle size. The Weibull distribution of Vickers microhardness of all the coatings shows apparent scattering, while the coating sprayed with Ti particle size of 28 µm exhibits a relatively even distribution. Compared with the coating sprayed with Ti particle size of 14 µm or 48 µm, the coating sprayed with Ti particle size of 28 µm exhibits improved mechanical and tribological properties, which are attributed to the high microhardness and strong bonding strength.  相似文献   

4.
The work is devoted to the investigation of nanohardness and tribological properties in TiB2 coatings deposited on austenitic steel substrates using an unbalanced magnetron sputtering with the focus on the coatings prepared under small negative bias to reduce compressive stresses. The coating prepared under floating potential exhibited nanocomposite microstructure with the size of TiB2 (hcp) nanocrystallites in the range of 2–7 nm. It is in contrast with the textured microstructure typically developed under higher negative bias. The reduction of the compressive stresses up to ?0.4 GPa while keeping the nanohardness >30 GPa and the coefficient of friction of 0.77 were obtained in this coating. The highest nanohardness of 48.6 ± 3.1 GPa and indentation modulus of 562 ± 18 GPa were achieved at ?100 V bias in the textured coating. The friction mechanisms include mechano-chemical formation of a tribological oxide film between the sliding partners combined with an abrasive wear.  相似文献   

5.
This study describes the correlation between microstructure, mechanical and tribological properties of TiCx coatings (with x being in the range of 0–1.4), deposited by reactive magnetron sputtering from a Ti target in Ar/C2H2 mixtures at ~ 200 °C. The mechanical and tribological properties were found to strongly depend on the chemical composition and the microstructure present. Very dense structures and high hardness, combined with low wear rates and friction coefficients, were observed for coatings with chemical composition close to TiC. X-ray diffraction and X-ray photoelectron spectroscopy analysis, used to evaluate coating microstructure, composition and relative phase fraction, showed that low carbon contents in the coatings lead to sub-stoichiometric nanocrystalline TiCx coatings being deposited, whilst higher carbon contents gave rise to dual phase nanocomposite coatings consisting of stoichiometric TiC nanocrystallites and free amorphous carbon. Optimum performance was observed for nanocomposite TiC1.1 coatings, comprised of nanocrystalline nc-TiC (with an average grain size of ~ 15 nm) separated by 2–3 monolayers of an amorphous a-DLC matrix phase.  相似文献   

6.
《Ceramics International》2017,43(11):7992-8003
This study examines the influence of thin layer coatings of CrAlTiN and CrN/NbN, deposited via physical vapor, on the biocompatibility, mechanical, tribological, and corrosion properties of stainless steel 304. The microstructure and morphology of the thin CrAlTiN and CrN/NbN layers were characterized by scanning electron microscopy (SEM), EDX, and X-ray diffraction. The pin on disc wear test was performed on bare and metal-nitride coated SST 304 under a 15 N load at 60 rpm and showed that the wear rates of the thin CrAlTiN and CrN/NbN film coatings were lower than the bare substrate wear ratio. The coefficients of friction (COFs) attained were 0.64, 0.5, and 0.55 for the bare substrate, CrN/NbN coating, and CrAlTiN coating, respectively. Nano indentation tests were also performed on CrAlTiN-coated and CrN/NbN-coated SST 304. The nanohardnesses and Young's moduli of the coated substrates were 28 GPa and 390 GPa (CrN/NbN-coated) and 33 GPa and 450 GPa (CrA1TiN-coated), respectively. For comparison, the nanohardness and Young's modulus of the uncoated substrate were 4.8 GPa and 185 GPa, respectively. Corrosion tests were conducted, and the behaviors of the bare and metal nitride-deposited substrates were studied in CaCl2 for seven days. The corrosion Tafel test results showed that the metal-nitride coatings offer proper corrosion resistance and can protect the substrate against penetration of CaCl2 electrolyte. The CrN/NbN-coated substrates showed better corrosion resistance compared to the CrAlTiN-coated ones. In evaluating the biocompatibility of the CrAlTiN and CrN/NbN coatings, the human cell line MDA-MB-231 was found to attach and proliferate well on the surfaces of the two coatings.  相似文献   

7.
The surface modification of stainless steel by coating with alumina (Al2O3) was carried out using sol–gel coating technology in combination with laser processing. Alumina coatings have been synthesised via a sol–gel route and deposited on stainless steel substrates by dip coating. The coated substrates were then treated with pulsed ytterbium fibre laser radiation (λ = 1064 nm) in continuous wave mode with different specific energies. The composition and structure of the coated surfaces after laser processing were characterised by ATR-FTIR, XRD, SEM and contact angle measurements, whilst the mechanical properties of modified surfaces were determined using nano-indentation. The results showed that the alumina xerogel films coated on the substrates are successfully converted into crystalline alumina ceramic coatings by the laser irradiation, the structure of resulting coatings being dependent on the irradiation conditions, with increase of laser specific energy leading to the formation of initially γ-Al2O3 with increasing amounts of α-Al2O3 at higher energy. Nano-indentation results reveal that the laser processing results in significant improvement in hardness and Young's modulus of the alumina-coated surface and, at optimum, can achieve the mechanical properties at the same level as pure α-alumina ceramic, much higher than those of the as-dried xerogel coating.  相似文献   

8.
We have investigated the effect of the microstructure on the mechanical properties of three nearly stoichiometric SiC coatings (SiC, SiC + C and SiC + Si coating), which were coated onto spherical particles as simulated nuclear fuel particles by fluidized-bed chemical vapour deposition (FBCVD). The mechanical properties of the SiC coatings were studied using micro- and nano-indentation. The microstructure was characterised using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). TEM was also used to elucidate the deformation behaviour under the indentation. The FBCVD SiC coatings studied exhibited a higher hardness than conventional CVD SiC coatings, and SiC coating gave the highest hardness among the three coatings. TEM confirmed that the presence of pores affect the Young's modulus of SiC coatings. The high hardness was attributed to the high density of dislocations and their interactions. The initiation and propagation of micro cracks under the confined shear stress was found to be responsible for the mechanism of plastic deformation. Based on this hardness-related plastic deformation mechanism, the variation of hardness in the three types of SiC coating was due to different grain morphologies.  相似文献   

9.
Multilayered zirconia toughened alumina (ZTA) and c-zirconia coatings were prepared using electron beam physical vapour deposition (EB-PVD). Characterizations of the morphology and chemical composition of the deposited coatings were performed using scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). Scratch resistance, nano-indentation and bending strength were used for the evaluation of the mechanical properties. X-ray diffraction of the top ceramic TBC surface showed that it consists entirely of cubic ZrO2 phase. The energy-dispersive X-ray spectroscopy analysis (EDS) showed that α-Al2O3 is the only oxide phase present at the interface, while SEM indicated the presence of columnar c-ZrO2 as the only phase of the top coat. Delamination over a large region was observed in the case of double layer (ZTA) coating. In contrast, the multilayered (ZTA1 + ZTA2 + c-Z) coating showed neither delamination nor cracking. The hardness and scratch measurements showed that the top coat c-ZrO2 layer is harder than the ZTA layers. The thermal conductivity of the multilayer coatings was estimated using the theoretical density and thermal conductivity values of zirconia toughened alumina (ZTA) and cubic-zirconia (c-ZrO2) together with their experimentally measured data.  相似文献   

10.
《Ceramics International》2016,42(16):18380-18392
Nanosized silicon nitride (Si3N4) particles reinforced Nickel-tungsten composite coatings were deposited on the surface of C45 steel sheet by pulse electrodeposition. The effect of duty cycle, frequency, current pattern and presence of Si3N4 nanoparticles on microstructure, phases and corrosion resistance and mechanical properties of the coatings were investigated. The Si3N4 phase was incorporated into Ni-W alloy matrix uniformly and the inclusion content of in the coating was analyzed by energy dispersive x-ray spectrometer (EDS). The structure, microhardness and surface roughness of the coatings was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Vickers micro-indenter and atomic force microscopy (AFM). The corrosion protection of steel by the coatings was evaluated by weight loss and electrochemical impedance spectroscopy (EIS). Corrosion rates of the coatings were determined using the Tafel polarization test. The results indicated that the duty cycle of 60%, pulse frequency of 1000 Hz, average current density of 5 A/dm−2, and Si3N4 nanoparticles concentration of 30 g/L were the optimal plating conditions. The amount of Si3N4 particles incorporated into the coating that were produced under the optimum plating conditions was 2.1 wt%, and the microhardness was 1031 Hv as well as the crystallite size of this coating was 27 nm.  相似文献   

11.
Instrumented indentation, AFM (atomic force microscopy) and tribological studies were performed on PE CVD (Plasma Enhanced Chemical Vapor Deposition) nanocomposite WC–C coatings to investigate the effects of surface roughness on the reliability of nanoindentation data and the possibilities of different AFM modes in nanomechanical testing, which can be used as a feedback to optimize deposition technology from the viewpoint of their mechanical properties. It was confirmed that surface roughness below 30 nm is necessary to keep the scatter of indentation modulus, EIT, and hardness, HIT, below 15%. PF QNM (Peak Force Quantitative NanoMechanical) mode was successfully applied for qualitative mapping of the elastic modulus of coatings with the stiffness above 300 GPa. LFM (lateral force microscopy) mode showed only weak contrast and quantitative measurements in both AFM modes require precise calibration. Coefficients of friction of the studied WC–C coatings were below 0.2 at RT, but increased to 0.7–0.8 at 450 °C due to the formation of a transfer film. Optimization of the deposition conditions based on nanoindentation resulted in the increase of EIT from ~220 GPa to 350 GPa and HIT from ~17 GPa to ~29 GPa.  相似文献   

12.
A promising wear resistant coating has been fabricated via vacuum plasma spray (VPS) technique by using electroless plating composite powders comprised of B4C and different amounts of Ni (10 and 20 vol.%). Tribological evaluation from the ball-on-disk test showed that the wear resistance of the composite coatings was superior to that of the pure B4C coating, and the composite deposit containing 10 vol.% Ni demonstrated the optimum tribological properties. This mainly attributed to the more uniform microstructures of the composite coatings, and the higher thermal conductivity of the composite coating also contributed to its distinguished wear behaviors. For the coatings investigated, the dominant wear mechanism was determined to be oxidation and the formation of a transfer layer on the worn surface.  相似文献   

13.
Yttria stabilized zirconia/alumina (YSZ/Al2O3) composite coatings were prepared from electrophoretic deposition (EPD), followed by sintering. The constrained sintering of the coatings on metal substrates was characterized with microstructure examination using electron microscopy, mechanical properties examination using nanoindentation, and residual stress measurement using Cr3+ fluorescence spectroscopy. The microstructure close to the coating/substrate interface is more porous than that near the surface of the EPD coatings due to the deposition process and the constrained sintering of the coatings. The sintering of the YSZ/Al2O3 composite coating took up to 200 h at 1250 °C to achieve the highest density due to the constraint of the substrate. When the coating was sintered at 1000 °C after sintering at 1250 °C for less than 100 h, the compressive stress was generated due to thermal mismatch between the coating and metal substrate, leading to further densification at 1000 °C because of the ‘hot pressing’ effect. The relative densities estimated based on the residual stress measurements are close to the densities measured by the Archimedes method, which excludes an open porosity effect. The densities estimated from the hardness and the modulus measurements are lower than those from the residual stress measurement and the Archimedes method, because it takes account of the open porosity.  相似文献   

14.
Effect of different curing agents on the mechanical, chemical resistance and anticorrosive properties of tank linings based on phenolic + novolac epoxies has been studied. Proportion of two epoxies was chosen by monitoring the processing viscosity of the coating. Parts of hardener required for 100 g of the above resin (phr) was scrutinized using differential scanning calorimetry and flexibility measurements. As a result, five coatings were finalized and their mechanical properties were investigated by dynamic mechanical analyzer. Anticorrosive properties of these coatings were studied using electrochemical impedance measurements and neutral salt spray exposure test. Chemical resistance of these coatings was investigated by monitoring the weight change of the coating during immersion. Coatings cured with modified cycloaliphatic amine (amine value = 350), in spite of lower cross-link density, exhibited superior anticorrosive properties and reasonably good chemical resistance. Electrochemical impedance results correlated fairly well with actual solvent resistance property of the coating.  相似文献   

15.
In the present study, super hard, hydrogen free amorphous diamond-like carbons with a high fraction of sp3 hybridised carbon were deposited by pulsed laser deposition. The tribological performance of DLC coatings was investigated by translatory oscillating relative motion of a 100Cr6 steel ball in diesel fuel or ambient air at 25 °C or 150 °C temperature. The structure of the coatings and the tribological worn surfaces were characterised by Raman spectroscopy and by scanning electron microscopy. Bio-fuel with a high fraction of unsaturated fatty acids has the potential to reduce friction in tribological systems with chemically inert DLC. Diesel blend with 10% bio-fuel reduces friction at 150 °C. If there is no diesel fuel, pre-oxidation at 450 °C for 8 h leads to the best wear resistance (↓ f & wear rate) at room temperature. Without diesel fuel, enhancement of temperature up to 150 °C during wear testing causes an increase of the coefficient of friction. Again the 450 °C pre-oxidised sample revealed the lowest friction. For this coating, Raman spectroscopy points to a small increase of the sp2 CC bonds. Diesel fuel seems to promote coherent coating failure under 150 °C wear, while pre-oxidation at 450 °C support adhesive coating ablation under higher loads or cyclic loading.  相似文献   

16.
The dependence of the corrosion-inhibiting properties of zinc-filled organic coatings on the nature of the conducting polymers and conducting pigments added and on the pigment particles’ surface coating with conducting polymer layers were investigated. The following materials were selected to examine the corrosion-inhibiting properties of the conducting polymers: polyaniline phosphate (PANI), polypyrrole (PPy), natural graphite, and carbon nanotubes. Conducting pigment combinations for application in coating materials were formulated by applying pigment volume concentrations (PVC) of 0.3%, 0.5% and 1%, which were completed with Zn dust to obtain pigment volume concentrations/critical pigment volume concentrations (PVC/CPVC) = 0.64. Such conducting pigment/zinc dust combinations represented corrosion inhibitors to be used as ingredients in protective coatings. Solvent-based 2K epoxy resin based coating materials containing the corrosion inhibitors so formulated were prepared to examine their anticorrosion properties. The pigmented coatings were subjected to laboratory corrosion tests in simulated corrosion atmospheres and to standardized mechanical resistance tests. The protective coatings so obtained exhibited a higher efficiency than coating materials containing zinc dust alone. The coating material containing carbon nanotubes at PVC = 1% and the coating material containing graphite coated with polypyrrole (C/PPy) at PVC = 0.5% emerged as the best zinc-filled coating materials with respect to their corrosion-inhibiting efficiency. Treatment with the conducting polymers had a beneficial effect on the coating materials’ mechanical properties.  相似文献   

17.
《Ceramics International》2015,41(7):8305-8311
Plasma spray physical vapor deposition (PS-PVD) was used to deposit yttria stabilized zirconia (YSZ) coatings with different columnar morphologies by varying the spray distance. Although similar quasi-columnar structures were formed at the spray distances of 600 mm and 1400 mm, the formation mechanisms of particles in the coatings were different. Besides, an electron beam physical vapor deposition (EB-PVD) like columnar coating out of pure vapor was deposited at a spray distance of 1000 mm and the columnar consisted of elongated nano-sized secondary columns. The hardness and Young׳s modulus of the coatings were investigated. Compared to the other two quasi-columnar structures, the EB-PVD like columnar coating exhibited higher hardness (~9.0 GPa ) and Young׳s modulus (~110.9 GPa), mainly due to its low porosity and defect.  相似文献   

18.
Organic–inorganic multilayer coating containing organically modified silicates, epoxy resins and TiO2 nanocontainers loaded with 8-hydroxyquinoline were produced on AA2024-T3 substrates via dip coating method. The parameters of the curing temperature and time were optimized via variation in a widespread range in order to realize coatings with best anticorrosive properties. Curing temperature at 110 °C for 24 h presented the best anticorrosive behavior. The morphology of the coating was examined via scanning electron microscopy. The composition of the coatings was determined by energy dispersive X-ray analysis and Fourier transform infra-red spectroscopy. Furthermore, the coatings were exposed to corrosive environment and evaluated by electrochemical impedance spectroscopy. We demonstrate that the presence of loaded TiO2 nanocontainers enhances the anticorrosive properties of the coatings; specifically, the total impedance values were increased about two orders of magnitude compare to the bare substrate after 400 h of exposure to aggressive environment.  相似文献   

19.
This study successfully developed a simple spray approach to fabricate a robust highly amphiphobic poly(phenylene sulfide) (PPS)/fluorinated ethylene propylene (FEP)/poly(dimethylsiloxane) (PDMS) composite coating with high-performance in corrosion-resistance, wear-durable through designing the nano/micro two-tier roughness and fluorinating with materials of the low surface free energy. The highly amphiphobic and tribological properties of the coatings were measured by the contact angle meter and the pin-on-disc tribometer, respectively. It was interested to observe that the composite coating showed superhydrophobic and highly oleophobic simultaneously, with the highest contact angles of water, glycerine and ethylene glycol up to 173 ± 2.1°, 142 ± 2.2° and 139 ± 2.1°, respectively. Moreover, the surfaces of the PPS/FEP composite coatings were investigated by means of Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD) and energy-dispersive X-ray spectroscopic (EDS). The robust highly amphiphobic coating also showed remarkable durability against strong acid and strong alkali in the pH range from 1 to 14. After 47 h sliding wear test, no failure sign on the PPS/45%FEP/PDMS composite coating was observed. Such unique characteristics were attributed to the synergistic effect of the nano/micro two-tier roughness and fluorinating with low surface free energy groups (–CF2–, –CF3–).  相似文献   

20.
《Ceramics International》2017,43(17):14616-14622
Hard and optically selective films are useful for low-emissivity applications and the surface layer of optical elements. In this paper, ZrAlN films were prepared by RF magnetron sputtering on glass substrates at room temperature under different power and gas flow rate. Microstructure, optical properties, chemical compositions and tribological properties of the coatings were investigated and the results indicate that the ZrAlN coatings, prepared with a nitrogen flow rate of 6 sccm, target power of 110 W for both Al and Zr, can give an excellent visible light transmittance that allows 90% of light in the range of 400–600 nm to transfer through the glass and films. Especially, the Transmittance of the ZrAlN is 93.4% at the wavelength of 550 nm which is higher than glass. The emissivity of ZrAlN coating is about 0.74, much lower than bare glass. The coatings maintain the optical properties even under salt spray test for 336 h. the results proved that the ZrAlN films are excellent anti-reflective coatings with superior mechanical property and high corrosion resistance, it can be used in low-emissivity glasses and some other optical components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号