首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The LSI process, i.e. the infiltration of molten silicon into porous structures, is one of the most economical techniques for the production of C/C-SiC and C/SiC ceramics. However, despite decades of development, the infiltration behavior affected by phenomena at the infiltration front has not been understood sufficiently. In the present work, a numerical model, based on the finite element method, was developed to simulate the infiltration process. The 3D model includes the penetration of silicon into the porous preform as well as the exothermal reactions at the infiltration front caused by the growth of SiC layers. For model validation, a special measuring furnace was used, enabling in situ optical inspection and weight measurement during liquid silicon infiltration into C/C-preforms in a controlled atmosphere. For the first time, a numerical model could be established which provides a tool to simulate the infiltration kinetics as well as the thermal processes during the LSI process in three dimensions. The model enables the optimization of melt infiltration processes with complex components within reasonable computer times.  相似文献   

2.
《Ceramics International》2020,46(11):18976-18984
Herein, Si-Y eutectic alloy were introduced into porous C/C preform by reactive melt infiltration (RMI) to prepare C/Si-Y-C composite. Phase compositions and their distributions in the as-prepared composites were investigated. Result indicated that four main regions were found in the typical zone in Si-Y-C matrix, i.e., amorphous carbon, polycrystalline SiC doped with YSi2, amorphous SiC and single crystal YSi2. Based on the reaction between Si-Y alloy and C/C preform and microstructural observations, a model regarding to microstructure formation mechanism was proposed to reveal reaction process. Moreover, improved flexural strength, fracture toughness, thermal diffusivity and thermal conductivity of C/Si-Y-C composite were achieved compared to C/C-SiC.  相似文献   

3.
对反应熔渗法制备C/C-SiC复合材料过程中Si的渗入行为以及Si/C的反应机理和动力学进行了综合评述.分析了高温下Si的密度、粘度、表面张力及Si/C润湿角对渗入能力的影响.概括了Washburn公式及其改进模型在液Si渗入行为方面的研究进展,给出了渗入时间、SiC生成速率与渗入高度之间的关系.对控制Si/C反应的溶解-沉淀机理和扩散机理进行了阐述,总结分析得出:不同阶段Si/C反应发生的区域不同,因而控制反应的机理也不同.最终的SiC相是由不同反应机理共同作用形成的.  相似文献   

4.
C/C-SiC composites were fabricated via Si-Zr reactive alloyed melt infiltration using various C/C preforms with different porosities as reinforcements. The influence of preform porosities on the microstructure, mechanical strength and ablation resistance of the as-prepared composites were investigated. The results indicated that microstructure and properties of the C/C-SiC composites seriously depended on C/C preform porosities. The composites were mainly composed of carbon, SiC and ZrSi2 phases, while some residual silicon still existed in the composites prepared with very large porosity preforms. Flexural strength of the composites firstly increased with increasing C/C preform porosities, then reached the highest value, 307?MPa, and finally turned to decrease with the further increasing of preform porosities. Densities of the composites increased with increasing preform porosities, while open porosities were generally small below 7%. Linear ablation rates of the composites firstly sharply decreased with increasing preform porosities and then slightly decreased to reach a balance value. In a word, C/C preform porosity was of great significance for reactive melt infiltration of C/C-SiC composites. Densities, microstructure, mechanical strength and ablation resistance of the resulting composites should be comprehensively taken into consideration to choose an optimal preform porosity for fabrication of C/C-SiC composites.  相似文献   

5.
C/C—SiC—Si材料是一种新型的复合材料。本文通过反应熔渗法将液态硅渗入C/C多孔体中得到致密的C/C—SiC—Si复合材料。重点研究了制备C/C多孔体的树脂浸渍裂解法,并测定了在不同浸渍次数下得到的不同的C/C多孔体的体积密度和气孔率,用扫描电镜观察了其形貌,讨论了不同的C/C多孔体对C/C—SiC—Si复合材料最终形貌的影响。  相似文献   

6.
Non-wettable material with Si melt is preferred to manufacture crucible in order to avoid adhesion between Si and traditional fused silica crucible. In this work, wetting and infiltration behaviors of Si drop on porous/dense SiO2-Si3N4 ceramic and SiO2 ceramic were systematically studied via the sessile drop technology and microstructural analysis method. The porous SiO2-Si3N4 ceramic exhibited non-wetting behavior with stable contact angle of about 130 °. Nevertheless, dense SiO2-Si3N4 ceramic and SiO2 ceramic displayed wetting features with Si drop. For both SiO2-Si3N4 ceramics, three kinds of infiltrations were observed, including infiltration under Si drop, infiltration under substrate surface (beyond drop) and infiltration on substrate surface. Notably, the infiltration under Si drop had the slowest speed with tiny infiltration depth. The above non-wetting behavior and tiny infiltration under drop of porous SiO2-Si3N4 ceramic were closely related to material pore characteristics and Si/substrate interfacial reaction.  相似文献   

7.
C/C多孔体对C/C-SiC复合材料微观结构和弯曲性能的影响   总被引:2,自引:0,他引:2  
以4种纤维含量相同(32%,体积分数,下同),用化学气相渗透(chemical vapor infiltration,CVI)法制备了4种密度的碳纤维增强碳(carbon fiber reinforced carbon,C/C)多孔体,基体炭含量约20%~50%.利用液相渗硅法(liquid silicon infiltration,LSI)制备了C/C-SiC复合材料,研究了C/C多孔体对所制备的C/C-SiC复合材料微观结构和弯曲性能的影响.结果表明:不同密度的C/C多孔体反应渗硅后,复合材料的物相组成均为SiC,C及单质Si;随着C/C多孔体中基体炭含量的增加,C/C-SiC复合材料中SiC含量逐渐减少而热解炭含量逐渐增加.C/C-SiC复合材料弯曲强度随着材料中残留热解炭含量增加而逐渐增加,热解炭含量为约42%的C/C多孔体所制备的C/C-SiC复合材料的弯曲强度最大,达到320 MPa.  相似文献   

8.
The electrically induced liquid infiltration (EILI) method for the synthesis of carbon/carbon–silicon carbide (C/C–SiC) materials was developed. The method involves Joule preheating of a porous carbon/carbon preform surrounded by silicon media, followed by silicon infiltration into the pore structure, and its reaction with carbon to form pore-free C/C–SiC composite. This technique is characterized by high heating rates (102–103 K/s) and short processing times (5–20 s), which distinguish it from conventional approaches. The influence of maximum treatment temperature, as well as preheating rate on the depth of infiltration, reaction kinetics, and the material microstructure was investigated. C/C–SiC composite with a compressive strength which was twice that of the initial C/C material was synthesized.  相似文献   

9.
A comparative study of reactive melt infiltration using Si and Si‐Y alloys is presented to provide insight into the governing processes that control the effectiveness of the melt interaction with a carbonaceous preform and the temperature capability of the SiC matrix for ceramic matrix composites. Through experiments on two substantially different scales of capillaries in porous graphite tubes using Si and Si‐Y alloys, the current study has characterized the phenomena that play a role in the infiltration of the melt and its reaction with the preform. It is shown that (i) the interface reaction controls wetting in both large and small capillaries and the climb rate is enhanced by the presence of Y; (ii) reaction choking occurs at critical throats within the pore network, usually behind the infiltration front; and (iii) different residual silicides can form during reaction and upon cooling. A potential mechanism for SiC growth is described, and the implications for the interplay between SiC growth and infiltration are discussed.  相似文献   

10.
《Ceramics International》2017,43(8):5887-5895
Reaction bonded B4C-SiC composites were prepared by infiltrating silicon melt into porous B4C-SiC green preforms at 1500 °C in vacuum. The porous green preform was obtained from a mixture of polycarbosilane (PCS) and particle size graded B4C after pre-sintering at 1600 °C. For the first time, PCS was used to adjust the phase composition and microstructure of the reaction bonded boron carbide composites. It is indicated that the addition of PCS and its content has a significant influence on the microstructure as well as the mechanical properties of the subsequent reaction bonded B4C-SiC composites. For the B4C-SiC composite with 5 wt% PCS added, a flexural strength of 319±12 MPa, and an elastic modulus of 402±18 GPa can be achieved, which is 23% and 15% higher than those of the composite without PCS addition, respectively. While, with the higher content of PCS addition, the mechanical properties of the composites are decreased drastically due to the large amount of residual Si agglomeration in the composites. The reaction mechanisms as well as their microstructure evolution processes correlated with the mechanical properties of the reaction bonded B4C-SiC composites are further discussed in our work.  相似文献   

11.
《Ceramics International》2017,43(18):16628-16637
Novel friction composites (C/C-Cu5Si-TiC) were prepared via reactive melt infiltration (RMI) of Cu-Ti alloy into porous C/C-SiC composites. The microstructure, physical properties and tribological behaviors of the novel material were studied. Results were compared to conventional C/C-SiC composites produced by liquid silicon infiltration(LSI). The resultant composite showed the microstructure composed of Cu5Si matrix reinforced with TiC particles and intact C/C structures. Most importantly, the composite did not present traces of free Si. As a result, the C/C-Cu5Si-TiC composite showed higher flexural strength, impact toughness and thermal diffusivity in comparison to C/C-SiC composites. Tribological properties were measured using 30CrSiMoVA as a counterpart. In general, the C/C-Cu5Si-TiC composites showed lower coefficient of friction(COF), but higher wear resistance and frictional stability. The improved wear resistance of the C/C-Cu5Si-TiC composites is credited to the formation of friction films from Cu5Si matrix. Other deformation and wear mechanisms are also described considering the microstructural observations.  相似文献   

12.
The processing of self-healing ceramic matrix composites by a short time and low cost process was studied. This process is based on the deposition of fiber dual interphases by chemical vapor infiltration and on the densification of the matrix by reactive melt infiltration of silicon. To prevent fibers (ex-PAN carbon fibers) from oxidation in service, a self-healing matrix made of reaction bonded silicon carbide and reaction bonded boron carbide was used. Boron carbide is introduced inside the fiber preform from ceramic suspension whereas silicon carbide is formed by the reaction of liquid silicon with a porous carbon xerogel in the preform. The ceramic matrix composites obtained are near net shape, have a bending stress at failure at room temperature around 300 MPa and have shown their ability to self-healing in oxidizing conditions.  相似文献   

13.
本文采用化学气相渗透(CVI)工艺制备了2D针刺预制体增强的C/C-SiC复合材料,并对材料密度、力学性能以及强粒子冲蚀下的烧蚀机理和破坏机制进行了分析。结果表明,C/C-SiC复合材料在强粒子冲蚀下的破坏机制主要为机械冲蚀和颗粒侵蚀,其次是冲蚀过程中伴随的少量氧化。材料内层间孔、束间孔以及针刺孔的存在加剧了C/C-SiC复合材料破坏。研究发现,通过改变预制体结构来实现材料力学性能的均衡,并提高材料密度以减少材料的孔隙率将成为该使用环境下的材料设计原则  相似文献   

14.
The contact angles of two different systems, molten silicon and a eutectic Si-8 at. pct Zr alloy and their evolution over timeon vitreous carbon and polycrystalline silicon carbide (SiC) substrates were investigated at 1500°C under vacuum, as well as in argon using the sessile drop technique. The contact angle and microstructure of the liquid droplet/solid substrate interface were studied to understand fundamental features of reactive wetting as it pertains to the infiltration process of silicon and silicon alloys into carbon or C/SiC preforms. Both pure Si and theeutectic alloy showed good wettability onvitreous carbon and SiC characterized by equilibrium contact angles between 29° and 39°. Theeutectic alloy showed a higher initial contact angle and slower spreading as compared to that of pure Si. On vitreous carbon bothsilicon and the eutecticalloy formed SiC at the interface, while no reaction was observed on the SiC substrates.  相似文献   

15.
Silicon carbide fiber reinforced MoSi2 matrix composite (SiCf/MoSi2) is prepared by liquid silicon infiltration at 1450°C. SiC fiber preform is first impregnated with phosphomolybdic acid (PMA) solution in ethyl alcohol. After calcinations, the PMA is converted into MoO3. Following the heating in hydrogen atmosphere, the MoO3 is reduced into metallic Mo, leading to a porous SiCf/Mo. The porous preform is then infiltrated with liquid silicon above silicon melting point to produce SiCf/MoSi2. The microstructure evolution and the underlying mechanism are studied. It is found that MoSi2 is formed by dissolution-precipitation. Through multiple impregnation-calcination cycles, a fully dense SiCf/MoSi2 can be obtained with MoSi2 as the continuous matrix phase. The presence of Mo is found to significantly reduce the attack of liquid silicon the silicon carbide fiber reinforcements.  相似文献   

16.
Carbon fibre-reinforced silicon carbide composites (C-SiC) were fabricated combining, for the first time, a liquid infiltration process (LI) of a mesophase pitch doped with silicon carbide nanoparticles followed by reactive liquid silicon infiltration using Spark Plasma Sintering (SPS) technique. A graphitization step was applied in order to improve the effectiveness of the processing. Up to three different morphologies of SiC particles were identified with a noticeable influence on the preliminary oxidation tests carried out. The presence of SiC nanoparticles added to the carbon matrix affects the morphology of the SiC obtained by in situ reaction of silicon and carbon during the LI process by SPS and it leads to an improvement of the material oxidation resistance. The results show that SPS is a promising method to develop C-SiC composites in a short time and with a high efficiency in the liquid silicon infiltration process.  相似文献   

17.
Due to the favorable self-healing performance, hexagonal boron nitride (h-BN) as additive in the matrix can significantly influence the oxidation behavior and the kinetic characteristics of C/C-SiC composites. In this work, C/C-SiC composites modified by h-BN (C/C-BN-SiC) were prepared by low-temperature compression molding (LTCM), pyrolysis and liquid silicon infiltration (LSI). Microstructure, oxidation behavior and kinetic characteristics of the C/C-BN-SiC composites were investigated compared with the C/C-SiC composite. Because h-BN is non-wetted by liquid silicon, the h-BN flakes in the matrix can obstruct and prolong the flow path of silicon, and protect the carbon fibers from corrosion to a certain extent. The oxidation kinetics of composites occur in low and high temperature domains, with different oxidation-controlling mechanisms, and the addition of h-BN can hinder the inward diffusion and lead to the decline of carbon recession and apparent activation energy.  相似文献   

18.
Ablation resistance of C/C-SiC composite prepared via Si-Zr alloyed reactive melt infiltration was evaluated using a facile and economical laser ablation method. Linear ablation rates of the composite increased with an increase in laser power densities and decreased with extended ablation time. The C/C-SiC composite prepared via Si-Zr alloyed melt infiltration presented much better ablation resistance compared with the C/SiC composite prepared by polymer infiltration and pyrolysis process. The good ablation resistance of the composite was attributed to the melted ZrC layer formed at the ablation center region. Microstructure and phase composition of different ablated region were investigated by SEM and EDS, and a laser ablation model was finally proposed based on the testing results and microstructure characterization. Laser ablation of the composite experienced three distinct periods. At the very beginning, the laser ablation was dominated by the oxidation process. Then for the second period, the laser ablation was dominated by the evaporation, decomposition and sublimation process. With the further ablation of the composite, chemical stable ZrC was formed on the ablated surface and the laser ablation was synergistically controlled by the scouring away of ZrC melts and evaporation, decomposition and sublimation process.  相似文献   

19.
In this work, the mechanisms leading to the pore closure in reactive melt infiltration (RMI) of carbon by pure silicon and a near eutectic Si-8 at-pct Zr alloy at 1500 and 1700 °C under vacuum were studied. Various geometrical configurations of microchannels were fabricated via laser ablation of glassy carbon plates. The micron size capillary channels allowed simplifying the complicated porosity distribution in the infiltration of powder or fibres based porous preform while keeping the physical dimensions in the range of where the physical phenomenon of pore closure takes place. The extent of infiltration was analysed by means of X-ray radiography. For RMI of pure Si, the widely accepted decrease in capillary radius by the formation of a solid state SiC layer by the reaction of liquid Si and C was observed, but did not lead to closure and it is hence not the infiltration limiting step in channels as small as 10 μm. However, in the case of the Si-Zr alloy infiltration, another mechanism of pore closure was observed, namely the precipitation of zirconium silicides at the infiltration front, due to Zr enrichment in the alloy by the continuous consumption of Si for the formation of SiC.  相似文献   

20.
《应用陶瓷进展》2013,112(5):307-310
Abstract

Carbon fibre reinforced C and SiC binary ceramic matrix composites (C/C–SiC) were fabricated by a quick and low cost reactive melt infiltration (RMI) method with Si–Zr25 and Si melts. Effects of zirconium addition in infiltrated Si melt on microstructure and ablation resistance of the composite were investigated. The composite by Si–Zr25 melt infiltration was composed of SiC, ZrC, C and a little amount of ZrSi2 without residual silicon, overcoming the problem of residual silicon in C/C–SiC composite by Si RMI. Compared with the composite by Si melt infiltration, the ablation resistance of the composite by Si–Zr25 was greatly improved by zirconium addition due to ZrO2 and SiO2 protecting layer formed during ablation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号