首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Freestanding SiC(Ti, B) films with high temperature resistance were fabricated from polymer precursor of polycarbosilane (PCS) blended with 0.26 wt% TiN and 0.74 wt% B powders. Results reveal that SiC(Ti, B) films with good mechanical properties are uniform and dense. After high temperature annealing at 1500 °C in argon, SiC(Ti, B) films exhibit better high temperature resistance as compared to SiC films without additives, which implies their potential applications in ultra-high temperatures (exceeding 1500 °C) microelectromechanical systems (MEMS). Sintering additives are effective in suppressing the growth of SiC crystals and decreasing the content of oxygen and free carbon, which is normally beneficial to enhance high temperature resistance of films.  相似文献   

2.
The effects of oxygen pick-up and Al atoms on the formation and microstructure of freestanding SiC(Al) films by melt spinning of polyaluminocarbosilane (PACS) precursor were studied. PACS green films were cross-linked for 1 h, 2 h, 3 h and 4 h, pre-pyrolyzed at 900 °C, respectively. They were continuously pyrolyzed at 1800 °C to convert initial PACS into SiC(Al) ceramic films. Results reveal that the strict control of oxygen content during the oxidation curing is essential to produce near-stoichiometric SiC(Al) films. The microstructure of the dense films is a mixture of β-SiC crystals, α-SiC nano-crystals, C clusters and a small amount of Al4O4C and Al4SiC4. Al atoms which play important roles as both sintering aids and grain growth inhibitor are well distributed in the films due to the presence of stable composition and structure. SiC(Al) films with excellent mechanical properties would be attractive candidate materials for MEMS in harsh environments.  相似文献   

3.
High-performance B4C composites toughened by TiB2-SiC agglomerates were fabricated via reactive hot pressing with B4C, TiC and Si as raw materials. The TiB2-SiC composite serves as a composite toughening phase formed in the B4C matrix through an in situ reaction; its agglomerates are composed of interlocked TiB2 and SiC, which can remarkably improve the toughness of the B4C composites. The Vickers hardness, flexural strength and fracture toughness of the B4C-TiB2-SiC composite reached 35.18 ± 0.45 GPa, 567 ± 14 MPa, and 6.38 ± 0.18 MPa m1/2 respectively. The special toughening structure of the TiB2-SiC composite introduced into B4C ceramics was evaluated for the first time in this study.  相似文献   

4.
SiC ceramics were reaction joined in the temperature range of 1450–1800 °C using TiB2-based composites starting from four types of joining materials, namely Ti–BN, Ti–B4C, Ti–BN–Al and Ti–B4C–Si. XRD analysis and microstructure examination were carried out on SiC joints. It is found that the former two joining materials do not yield good bond for SiC ceramics at temperatures up to 1600 °C. However, Ti–BN–Al system results in the connection of SiC substrates at 1450 °C by the formation of TiB2–AlN composite. Furthermore, nearly dense SiC joints with crack-free interface have been produced from Ti–BN–Al and Ti–B4C–Si systems at 1800 °C, i.e. joints TBNA80 and TBCS80, whose average bending strengths are measured to be 65 MPa and 142 MPa, respectively. The joining mechanisms involved are also discussed.  相似文献   

5.
TiB2–AlN–SiC (TAS) ternary composites were prepared by reactive hot pressing at 2000°C for 60 min in an Ar atmosphere using TiH2, Si, Al, B4C, BN and C as raw powders. The phase composition was determined to be TiB2, AlN and β-SiC by XRD. The distribution of elements Al and Si were not homogeneous, which shows that to obtain a homogeneous solid solution of AlN and SiC in the composites by the proposed reaction temperatures higher than 2000°C or time duration longer than 60 min are needed. The higher fracture toughness (6·35±0·74 MPa·m1/2 and 6·49±0·73 MPa·m1/2) was obtained in samples with equal molar contents of AlN and SiC (TAS-2 and TAS-5) in the TAS composites. The highest fracture strength (470±16 MPa) was obtained in TAS-3 sample, in which the volume ratio of TiB2/(AlN+SiC) was the nearest to 1 and there was finer co-continuous microstructure. ©  相似文献   

6.
The oxidation behaviour of AlN–SiC–TiB2 composite materials with 2, 5 and 10 mass% TiB2 and 3 mass% Fe additive obtained using powder metallurgy methods was studied in air up to 1500 °C by thermogravimetry (TG) and differential thermal analysis (DTA) techniques. The phase composition and structure of the oxide films formed were investigated using metallography, X-ray diffraction (XRD) and electron probe microanalysis (EPMA) methods. The two-stage character of non-isothermal oxidation kinetics (heating rate of 15 grade/min) of composites was established. During the first oxidation stage (up to 1350 °C), the formation of α-Al2O3, TiO2 (rutile), B2O3 and β-cristobalite as well as different aluminium borates was found. They formed as a result of interaction between Al2O3 and melted B2O3. During the second stage (above 1350–1400 °C), the mullite 3Al2O3·2SiO2 proved to be a main oxidation product in the scale; besides, some amounts of β-Al2TiO5 were formed as well. The iron additive dissolved in the mullite and aluminium titanate phases that led to the stabilization of a scale formed. It was established that for the three different TiB2 contents, oxidation isotherms follow the parabolic or paralinear rate law. The slope change on the Arrhenius plot given by the dependence of the parabolic rate constants on the reciprocal temperature, suggests a change of the oxidation mechanism in the temperature range of 1300–1350 °C. For example, for the (AlN–SiC)–5% TiB2 composite specimen, the calculated values of apparent activation energy are equal to 285 kJ/mol (1100–1300 °C) and 500 kJ/mol (1350–1550 °C), respectively. The AlN–SiC–TiB2 ceramics developed here can be recommended as high-performance materials for a use in oxidizing medium up to 1450 °C.  相似文献   

7.
Phenyl (PPS) and methyl (PMS) containing polysiloxanes were pyrolyzed at elevated temperatures (900–1500 °C) under argon atmosphere to investigate the phase developments within the polymers. It was found that pyrolysis of the polymers under inert atmosphere up to 1300 °C leads to amorphous silicon oxycarbide (SiOxCy) ceramics. Conversions at higher temperatures results in the transformations into the crystalline β-SiC phases. Ceramic matrix composites (CMCs) were developed based on the active filler controlled pyrolysis (AFCOP) of polysiloxanes with active Ti filler additions. CMC monoliths were prepared with 60–80 wt.% of active Ti particulates blended into polymer precursors. Green bodies of the composites were made by warm pressing under 15 MPa pressure and ceramics were obtained by pyrolysis at elevated temperatures between 900 and 1500 °C under argon atmosphere. The results showed that due to the incorporation of active Ti fillers, formation of crystalline phases such as TiC, TiSi, and TiO occured within the amorphous matrix due to the reactions between the Ti and the polymer decomposition products. The microstructural and mechanical characterization results of the composites are presented within the paper.  相似文献   

8.
Effects of oxidation cross-linking and sintering temperature on the microstructure evolution, thermal conductivity and electrical resistivity of continuous freestanding polymer-derived SiC films were investigated. The as-received films consisting of β-SiC nanocrystals embedded in amorphous SiOxCy and free carbon nanosheets were fabricated via melt spinning of polycarbosilane (PCS) precursors and cured for 3 h/10 h followed by pyrolysis from 900 °C to 1200 °C. Results reveal that nanoscale structure (β-SiC/SiOxCy/Cfree) provides an ingenious strategy for constructing highly thermal conductive, highly insulating and highly flexible complexes. In particular, the 3 h-cured films sintered at 1200 °C with satisfying thermal conductivity (46.8 W m?1 K?1) and electrical resistivity (2.1 × 108 Ω m) are suitable for the realization of high-performance substrates. A remarkable synergistic effect (lattice vibration of β-SiC nanocrystals and close-packed SiOxCy, free-electron heat conduction of β-SiC and free carbon, and supporting role of oxygen vacancy) contributing to thermal conductivity improvement is proposed based on the analysis of microstructure, intrinsic properties and simulations. Eventually, the SiC films without additional dielectric layers are directly silk-screen printed with high-temperature silver paste and used as heat dissipation substrates for high-power LED devices via chip-on-board (COB) package. The final devices can emit bright light with low-junction temperature (52.6 °C) and good flexibility owing to the mono-layer SiC substrate with low thermal resistance and desirable mechanical properties. This work offers an effective approach to design and fabricate flexible heat dissipation ceramic substrates for thermal management in advanced electronic packaging fields.  相似文献   

9.
Residual strength (room temperature strength after exposure in air at high temperatures) of hot pressed ZrB2–SiC composites was evaluated as function of SiC contents (10–30 vol%) as well as exposure temperatures for 5 h (1000–1700 °C). Multilayer oxide scale structures were found after exposures. The composition and thickness of these multilayered oxide scale structure was dependent on exposure temperature and SiC contents in composites. After exposure to 1000 °C for 5 h, the residual strength of ZrB2–SiC composites improved by nearly 60% compared to the as-hot pressed composites with 20 and 30 vol% SiC. On the other hand, the residual strength of these composites remained unchanged after 1500 °C for 5 h. A drastic degradation in residual strength was observed in composites with 20 and 30 vol% SiC after exposure to 1700 °C for 5 h in ZrB2–SiC. An attempt was made to correlate the microstructural changes and oxide scales with residual strength with respect to variation in SiC content and temperature of expsoure.  相似文献   

10.
《Ceramics International》2016,42(8):9906-9912
Wetting behavior of molten Cu50Ti alloy on hexagonal BN (h-BN) and TiB2 ceramics has been studied under vacuum using a modified sessile drop method. Final contact angles of 8° and 3° are obtained at 1000 °C on h-BN and TiB2, respectively. Interaction occurs at the interface between the molten alloy and BN, leading to the formation of a reaction layer containing TiB and Ti nitrides. Interfacial interaction of Cu50Ti with TiB2 results in the formation of densely packed TiB layer about 60–100 μm thick and the detachment of TiB2 grains. Spreading wetting of liquid Cu50Ti on h-BN is mainly controlled by the reactions between Ti and BN at the triple line. For Cu50Ti/TiB2 system, spreading is mainly limited by the interfacial reaction in the first stage, and is possibly influenced by both the diffusion of boron atoms and viscous friction of the liquid in the second stage. Finally, brazing of graphite to CuCrZr alloy has been realized using Cu50TiH2 with ceramic additives (including BN and TiB2) as composite fillers. The joints exhibit favorable interfacial bonding between the filler layer and the substrates. The ceramic reinforcements in the filler layer could contribute to the improvement of the shear strength.  相似文献   

11.
This study reports the pressureless sintering of cubic phase silicon carbide nanoparticles (β-SiC). Green blended compounds made of SiC nano-sized powder, a fugitive binder and a sintering agent (boron carbide, B4C), have been prepared. The binder is removed at low temperature (e.g. 800 °C) and the pressureless sintering studied between 1900 and 2100 °C. The nearly theoretical density (98% relative density) was obtained after 30 min at 2100 °C.The structural and microstructural evolutions during the heat treatment were characterised. The high temperatures needed for the sintering result in the β-SiC to α-SiC transformation which is revealed by the change of the composite microstructure. From 1900 °C, dense samples are composed of β-SiC grains surrounding α-SiC platelets in a well-defined orientation.TEM investigations and calculation of the activation energy of the sintering provided insight to the densification mechanism.  相似文献   

12.
《Ceramics International》2017,43(16):13282-13289
A facile method was developed to synthesize SiOx spheres or dumbbell-shaped β-SiC whiskers on expanded graphite (SiOx/EG or β-SiC/EG) by silicon vapor deposition without catalyst. With the carbon black atmosphere, the above hybrids were synthesized above 1100 °C in a graphite crucible where silicon powder was placed under the expanded graphite (EG). The growth of SiOx spheres is controlled by vapor-solid mechanism at 1100 °C and 1200 °C. Namely, the active carbon atoms absorbed SiO (g) and Si (g) to form SiC nuclei. Then, the SiO2, residual SiO (g) and Si (g) deposited on SiC nuclei to form SiOx spheres. At 1300 °C and 1400 °C, the same SiOx spheres formed on EG as well as many dumbbell-shaped β-SiC whiskers. The growth of dumbbell-shaped β-SiC whiskers is controlled by vapor-vapor and vapor-solid mechanism successively. In a word, firstly, the β-SiC whiskers with defects formed via the reaction between Si (g) and CO (g). After that, the SiO2, residual SiO (g) and residual Si (g) preferentially deposited on defects, then deposited on other parts of β-SiC whiskers to form dumbbell-shaped SiC whiskers.  相似文献   

13.
《Ceramics International》2017,43(11):8475-8481
ZrC-based composites were consolidated from ZrC and TiB2 powders by the Spark Plasma Sintering (SPS) technique at 1685 °C and 1700 °C for 300 s under 40-50-60 MPa. Densification, crystalline phases, microstructure, mechanical properties and oxidation behavior of the composites were investigated. The sintered bodies were composed of a (Zr,Ti)C solid solution and a ZrB phase. The densification behaviors of the composites were improved by increasing the TiB2 content and applied pressure. The highest value of hardness, 21.64 GPa, was attained with the addition of 30 vol% TiB2. Oxidation tests were performed at 900 °C for 2 h and the formation of ZrO2, TiO2 and B2O3 phases were identified by using XRD.  相似文献   

14.
ZrB2–SiC composites were prepared by spark plasma sintering (SPS) at temperatures of 1800–2100 °C for 180–300 s under a pressure of 20 MPa and at higher temperatures of above 2100 °C without a holding time under 10 MPa. Densification, microstructure and mechanical properties of ZrB2–SiC composites were investigated. Fully dense ZrB2–SiC composites containing 20–60 mass% SiC with a relative density of more than 99% were obtained at 2000 and 2100 °C for 180 s. Below 2120 °C, microstructures consisted of equiaxed ZrB2 grains with a size of 2–5 μm and α-SiC grains with a size of 2–4 μm. Morphological change from equiaxed to elongated α-SiC grains was observed at higher temperatures. Vickers hardness of ZrB2–SiC composites increased with increasing sintering temperature and SiC content up to 60 mass%, and ZrB2–SiC composite containing 60 mass% SiC sintered at 2100 °C for 180 s had the highest value of 26.8 GPa. The highest fracture toughness was observed for ZrB2–SiC composites containing 50 mass% SiC independent of sintering temperatures.  相似文献   

15.
The electrical response of a liquid-phase-sintered (LPS) α-SiC with 10 wt.% Y3Al5O12 (YAG) additives was studied from near-ambient temperature up to 800 °C by complex impedance spectroscopy. The electrical conductivity of this LPS SiC ceramic was found to increase with increasing temperature, which was attributed to the semiconductor nature of the SiC grains. It was concluded that the contribution of the SiC grains to the electrical conductivity of the LPS SiC ceramic at moderate temperatures (<450 °C) is a somewhat greater than that of the YAG phase. In contrast, at higher temperatures the SiC grains control the electrical conductivity of the LPS SiC ceramic. It was also found that there are two activation energies for the electrical conduction process of the α-SiC grains. These are 0.19 eV at temperatures lower than ∼400 °C and 2.96 eV at temperatures higher than ∼500 °C. The existence of two temperature-dependence conduction regimes reflects the core–shell substructure that develops within the SiC grains during the liquid-phase sintering, where the core is pure SiC (intrinsic semiconductor) and the shell is mainly Al-doped SiC (extrinsic semiconductor).  相似文献   

16.
A heat-resistant SiC ceramic was developed from submicron β-SiC powders using a small amount (1 wt.%) of AlN–Lu2O3 additives at a molar ratio of 60:40. Observation of the ceramic using high-resolution transmission electron microscopy (HRTEM) showed a lack of amorphous films in both homophase (SiC–SiC) boundaries and junction areas. The junction phase consisted of Lu–Si–O elements, and the homophase boundaries contained Lu, Al, O, and N atoms as segregates. The ceramic maintained its room temperature (RT) strength up to 1600 °C. The flexural strength of the ceramic was 630 MPa and 633 MPa at RT and 1600 °C, respectively.  相似文献   

17.
This paper reports the fabrication of SiC toughened by in situ synthesized TiB2 based on pressure-less sintering technique using TiO2, B4C, C and SiC as starting materials. The process conditions were investigated in detail, including the pre-sintering temperatures, carbon contents, differently sized TiO2 powders, TiB2 volume contents, final sintering temperature and time. These conditions were found to have great influence on the TiB2 toughened SiC in terms of relative density, TiB2 particle size and fracture toughness. Homogeneous dispersion of in situ synthesized TiB2 secondary phase was confirmed to enhance the KIC of the SiC matrix. The KIC of SiC toughened by in situ synthesized TiB2 (15 vol%) reaches 6.3 MPa m1/2, which is among the highest values reported so far on TiB2 reinforced SiC composites based on the pressure-less sintering technique using TiO2 as Ti source.  相似文献   

18.
Micropatterned SiC ceramics were fabricated from polycarbosilanes applying a softlithographic replication technique. A polydimethylsiloxane mould replicated from a photolithographic microstructured silicon wafer was used as master structure. The polydimethylsiloxane mould was coated with a solution containing a mixture of two different polycarbosilanes in n-octane. After treatment at 200–400 °C the cross-linked polycarbosilane films were debonded and pyrolysed at 900 °C in nitrogen and subsequently crystallised at temperatures up to 1500 °C in argon. The cross-linking and thermal degradation behaviour of the polycarbosilanes was investigated by Fourier-transform infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis. X-ray diffractrometry showed the expected development of a nanocrystalline β-SiC (3 nm) as the main phase with increasing temperature. However, traces of α-SiO2 derived from the polycarbosilane precursors were also detected by X-ray analysis. Removal of the α-SiO2 dioxide with hydrofluoric acid in the pyrolysed samples and subsequent increased the crystallite size to 7 nm. The Young's modulus determined by nanoindentation was increased from 3 GPa after cross-linking to 110 GPa after crystallisation. Scanning electron microscopy revealed, that the initial micropatterns were fully retained in the pyrolysed and crystallised SiC ceramics. The micropatterned cross-linked and crystallised β-SiC based substrates exhibited light scattering characteristics, which qualify them as promising candidates for diffractive optical elements in microoptical applications.  相似文献   

19.
Pine (Pinus silvestris) wood samples were dried and impregnated with a SiO2 sol from a sol–gel process. The impregnation involved a two step process in a custom-made apparatus. Impregnated samples were dried and pyrolised at 500 °C under an oxygen-free atmosphere. SiC synthesis was performed in a high-temperature furnace in an argon atmosphere at a temperature of 1600 °C for 2, 4 and 8 h. The samples were investigated with X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The changes in the SiC synthesis time at the maximum temperature lead to changes in the microstructure and crystalline phase composition. An increase in the synthesis time opens up the possibility to produce mainly α-SiC crystalline modification containing porous SiC ceramics.  相似文献   

20.
《Ceramics International》2016,42(4):5375-5381
The influences of adding SiC on the microstructure and densification behavior of ZrB2 and TiB2 ceramics, hot pressed at 1850 °C for 60 min under 20 MPa, were investigated. The sintered samples were characterized by SEM, EDS and XRD methods. A fully dense TiB2-based ceramic was obtained by adding 30 vol% SiC. The grain size of ZrB2 or TiB2 matrices in the final microstructures decreased with increasing SiC content. The XRD analyses, microstructural characterization as well as thermodynamical calculations proved the in-situ formation of TiC in the SiC reinforced TiB2-based composites. The interfaces between ZrB2 and SiC grains in the SiC reinforced ZrB2-based composites were free of any impurities or tertiary interfacial phases such as ZrC. This result was consistent with the X-ray diffraction pattern and thermodynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号