共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was carried out to gain understanding about the sintering behaviour of highly crystallisable industrial waste derived silicate mixtures under direct heating and rapid cooling conditions. The materials used in this study were plasma vitrified air pollution control waste and rejected pharmaceutical borosilicate glass. Powder compacts sintered under direct heating conditions were highly porous; compacts with particle size <?38?μm reached a maximum density of 2.74 g?cm??3 at 850°C, whereas compacts with particles of size <?100?and <?250?μm reached maximum densities of 2.69 and 2.72 g?cm??3 at 875 and 900°C respectively. Further increase in sintering temperature resulted in a rapid decrease in density of the glass ceramics. Image analysis results were used to link the sudden drop in density to the increase in volume of microsized pores formed in the samples during sintering. In particular, compacts made from <?38 μm particles sintered at 950°C resulted in 65 vol.-% porosity with a pore size of ~20?μm. Such materials can be used for sound and thermal insulation purposes. 相似文献
2.
The feasibility of waste glass recycling in ceramic tile production was assessed with special reference to fully vitrified products (porcelain stoneware). Soda-lime float or container glass was introduced, in replacement of sodic feldspar, in typical porcelain stoneware bodies (up to 10 wt.%) that underwent a laboratory simulation of tilemaking process, with a technological and compositional characterization of both fired and unfired tiles. Soda-lime glass had no significant effect on semi-finished products, but it influenced remarkably the firing behaviour, increasing shrinkage and closed porosity, decreasing open porosity and bulk density, and lowering mechanical and tribological performances. Waste glass promotes a more effective melting of quartz and a partial dissolution of mullite, leading to a more abundant and less viscous liquid phase, which accelerates the sintering kinetics. In conclusion, soda-lime glass can be used in small amounts (5% or less) with tolerable modifications of technological behaviour and performances of porcelain stoneware tiles. 相似文献
3.
Sibel Ergul Fabiola Ferrante Paola Pisciella Alexander Karamanov Mario Pelino 《Ceramics International》2009,35(7):2789-2795
Alkaline basaltic tuffs, from Southern Turkey were characterized and employed to obtain ceramic and glass–ceramic materials by combined sintering and crystallization process. The chemical and mineralogical compositions were analyzed by X-ray fluorescence spectrometry and X-ray diffraction analyses, respectively. The phase formation and the sintering behaviour were investigated by DTA, differential dilatometer and hot-stage microscopy. The micro-structure and residual porosity of the sintered samples were observed by SEM and evaluated by pycnometric techniques. Ceramic material, based on 50% basaltic tuff and 50% clay, was obtained at 1150 °C with 13% total porosity and 4% water absorption. Glass–ceramic materials were synthesized directly using the milled basaltic tuff by mean of the sinter-crystallization technique, in the range 900–1150 °C. The investigation has showed that, due to the high porosity and low crystallinity, alkaline tuffs could be a suitable raw material for ceramic application. 相似文献
4.
Fernanda Andreola Luisa Barbieri E. Karamanova Isabella Lancellotti Mario Pelino 《Ceramics International》2008
In the present work, the feasibility to substitute feldspar raw material in a porcelain stoneware body with Panel Cathode Ray Tube (CRT) glass was investigated. A standard batch and a composition, where 35 wt.% Na-feldspar was substituted by CRT glass, were sintered at different temperatures in the range of 1000–1250 °C. The degree of the densification was studied by evaluation of the closed and total porosity, while the sintering rate was estimated by non-isothermal dilatometric measures. The variation of the crystalline phase composition was evaluated by XRD analysis. From the preliminary study other ceramic samples with different percentages of CRT glass (i.e. 2.5, 5 and 10 wt.%) were prepared and fired in industrial kiln. The sintering parameters, the microstructure and the mechanical properties were measured and compared with the standard composition. 相似文献
5.
《Ceramics International》2017,43(16):13199-13205
Crystalline phase evolution through merely adjusting composition was achieved in silicate glass ceramics containing LunOn-1Fn+2 (n = 5–10) nanocrystals. Orthorhombic or cubic phase nanocrystals were precipitated in the aluminosilicate glass matrix after thermal treatment together with varying the Na2O/NaF ratio. Oxyfluoride nanocrystals with quasi-spherical shape show homogenous and dense distribution in glass matrix by transmission electron microscopy measurement. Intense upconversion and mid-infrared emissions were realized in these glass ceramics compared to the precursor glass, and the emission spectral shapes, relative emission intensity and fluorescence decay curves of Er3+ in cubic LuOF embedded samples exhibit remarkable differences due to the crystal phase dependent effect in glass ceramics. These results indicate that the crystallization and luminescence properties of oxyfluoride glass ceramics could be modified through the alteration of glass composition, which could be used for the development of novel glass ceramics and design of luminescent properties. 相似文献
6.
The influence of Al2O3 (8 wt.%) on sintering and crystallization features of glass powders based on magnesium silicate (MgSiO3) was experimentally determined. The investigated compositions were Y0.125Mg0.875Si0.875B0.125O3 and Y0.125Mg0.725Ba0.15Si0.875B0.125O3. For the experiments, glasses in bulk and frit forms were produced by melting in Pt-crucible at 1600 °C for 1.5 h. Glass-powder compacts were sintered at different temperatures between 900 °C and 1100 °C. The evolution of crystalline regime was determined by in situ recording of X-ray diffractograms of fine glass powders at elevated temperatures. The results and their discussion showed that addition of 8 wt.% Al2O3 in glass batches affected the thermal properties of the glasses and resulted in MgSiO3-based glass ceramics well sintered between 900 °C and 1100 °C. In the BaO-free MgSiO3 glass ceramics, clino- and orthoenstatite crystallize while the presence of BaO favours the formation of hexacelsian. 相似文献
7.
Seiichi Taruta Mutsumi Matsuki Hiromasa Nishikiori Tomohiko Yamakami Tomohiro Yamaguchi Kunio Kitajima 《Ceramics International》2010
Eu-doped transparent mica glass–ceramics were prepared, the influence of Eu-doping on the crystallization of the parent glasses was investigated and the luminescent properties of the parent glasses and the glass–ceramics were estimated. A small additive amount of Eu element was very effective in preparing transparent mica glass–ceramics. However, the excess addition led to the coarsening of phase separation in the glass phase and the separation of unidentified crystal phases and β-eucryptite during heating of the parent glasses, which caused white opaque at lower heating temperatures. When mica crystals were separated, Eu ions entered the interlayers of mica crystals. The observed emission and excitation spectra showed that parts of Eu3+ ions which were added as Eu2O3 were reduced to Eu2+ ions during melting of the starting materials and heating the parent glasses in air and the energy transfer from Eu2+ to Eu3+ ions occurred. 相似文献
8.
Gel-cast bodies based on cordierite glass-ceramics were prepared by sintering route. Effect of monomer and cross-linker values as well as sintering temperatures on bending strength of dried and sintered bodies were investigated. While the bending strength of dried gel-cast bodies was increased with the percentage of the polymers, bending strength of sintered bodies was changed conversely with them. Therefore, it was concluded that the least amount of monomer acrylamid (3 wt.%) and moderate amount of cross-linker (∼0.75 wt.%) guarantees the required dried and fired bending strengths. The optimum sintering temperature was about 1270 °C and specimens that was fired at this temperature showed a maximum bending strength of about 200 MPa. 相似文献
9.
Providing structural support while maintaining bioactivity is one of the most important goals for bioceramic scaffolds, i.e. artificial templates which guide cells to grow in a 3D pattern, facilitating the formation of functional tissues. In the last few years, 45S5 Bioglass® has been widely investigated as scaffolding material, mainly for its ability to bond to both hard and soft tissues. However, thermal treatments to improve the relatively poor mechanical properties of 45S5 Bioglass® turn it into a glass-ceramic, decreasing its bioactivity. Therefore, the investigation of new materials as candidates for scaffold applications is necessary. Here a novel glass composition, recently obtained by substituting the sodium oxide with potassium oxide in the 45S5 Bioglass® formulation, is employed in a feasibility study as scaffolding material. The new glass, named BioK, has the peculiarity to sinter at a relatively low temperature and shows a reduced tendency to crystallize. In this work, BioK has been employed to realize two types of scaffolds. The obtained samples have been fully characterized from a microstructural point of view and compared to each other. Additionally, their excellent bioactivity has been established by means of in vitro tests. 相似文献
10.
Devis Bellucci Valeria Cannillo Gianluca Ciardelli Piergiorgio Gentile Antonella Sola 《Ceramics International》2010
A fundamental issue for the restoration of bone defects according to a tissue engineering approach is the development of highly porous bioactive scaffolds. The polymer burning out method is widely employed to fabricate bioceramic scaffolds because of its versatility, simplicity and low cost. However, the resulting scaffolds may suffer low porosity and non-interconnected pores. In the present contribution a new fabrication method is presented. Thanks to a recently developed potassium-based bioactive glass, which has the peculiarity to be sintered at a relatively low temperature (i.e. ∼750 °C), it was possible to use sodium chloride particles as pore generating agents, which helped to maintain the shape of the struts during the entire sintering process. The salt particles can be easily removed by immersing the scaffold in water, giving place to a structure that combines high porosity (in the 70–80 vol.% range) with interconnected pores and an appreciable mechanical behaviour (Young's modulus in the 3.4–3.7 MPa range according to compression tests). 相似文献
11.
D.U. Tulyaganov S. Agathopoulos I. Kansal P. Valrio M.J. Ribeiro J.M.F. Ferreira 《Ceramics International》2009,35(8):3013-3019
The purpose of this study was the synthesis of lithium disilicate glass-ceramics in the system SiO2–Al2O3–K2O–Li2O. A total of 8 compositions from three series were prepared. The starting glass compositions 1 and 2 were selected in the leucite–lithium disilicate system with leucite/lithium disilicate weight ratio of 50/50 and 25/75, respectively. Then, production of lithium disilicate glass-ceramics was attempted via solid-state reaction between Li2SiO3 (which was the main crystalline phase in compositions 1 and 2) and SiO2. In the second series of compositions, silica was added to fine glass powders of the compositions 1 and 2 (in weight ratio of 20/100 and 30/100) resulting in the modified compositions 1–20, 1–30, 2–20, and 2–30. In the third series of compositions, excess of silica, in the amount of 30 wt.% and 20 wt.% with respect to the parent compositions 1 and 2, was introduced directly into the glass batch. Specimens, sintered at 800 °C, 850 °C and 900 °C, were tested for density (Archimedes’ method), Vickers hardness (HV), flexural strength (3-point bending tests), and chemical durability. Field emission scanning electron microscopy and X-ray diffraction were employed for crystalline phase analysis of the glass-ceramics. Lithium disilicate precipitated as dominant crystalline phase in the crystallized modified compositions containing colloidal silica as well as in the glass-ceramics 3 and 4 after sintering at 850 °C and 900 °C. Self-glazed effect was observed in the glass-ceramics with compositions 3 and 4, whose 3-point bending strength and microhardness values were 165.3 (25.6) MPa and 201.4 (14.0) MPa, 5.27 (0.48) GPa and 5.34 (0.40) GPa, respectively. 相似文献
12.
Devis Bellucci Valeria CannilloAntonella Sola Federica ChielliniMatteo Gazzarri Chiara Migone 《Ceramics International》2011,37(5):1575-1585
Since it was introduced at the end of the ‘60s, the 45S5 Bioglass® has played a fundamental role among the materials for orthopedic applications because of its ability to build a stable bond with the surrounding bone. The recent development of bone tissue engineering has led the interest of many scientists in the design of Bioglass®-based scaffolds, i.e. porous systems able to drive and foster the bone tissue regrowth. Among the available techniques to realize scaffolds, the polymer burning out method, which employs organic particles as pore generating agents in a ceramic matrix, combines versatility and low cost. In spite of the advantages of the polymer burning out method, this technique has been rarely applied to 45S5 Bioglass® and a systematic feasibility study has not been carried out on this issue yet. In order to fill this gap, in the present contribution the polymer burning out method was employed to design macroporous scaffolds based on 45S5 Bioglass®. Different amounts of organic phase were used to obtain samples with different porosity. The samples were characterized from a microstructural point of view, in order to evaluate the pore morphology, dimension and degree of interconnectivity. Such findings proved that a proper setting of the processing parameters made it possible to achieve very high porosity values, among the best ones obtained in the literature with the same technique, together with an appreciable mechanical behaviour, according to compression tests. Finally, the scaffolds bioactivity was assessed by means of in vitro tests in a simulated body fluid (SBF) solution. Moreover, in the view of a potential application for bone tissue engineering, a preliminary biological evaluation of the obtained scaffolds to sustain cell proliferation was carried out. 相似文献
13.
Jakob König Rasmus R. Petersen Niels Iversen Yuanzheng Yue 《Ceramics International》2018,44(10):11143-11150
The process of foaming glass is very dependent on the chemical composition of the glass. In this study we used a foaming-agent/oxidizing-agent couple and a crystallization inhibitor to foam cullets of flat, container and CRT-panel glass. Foamed glass with a density of 110–120?kg?m–3, a thermal conductivity of 50–52?mW?m–1 K–1 and a homogeneous pore structure was obtained from a mixture of panel glass, 0.33?wt% carbon and 4.45?wt% Fe2O3. We also showed that it is possible to fabricate foamed glass with the same density or pore structure as mentioned above by adding up to 50?wt% container cullet or 70?wt% flat glass to the mixture. In the foamed samples with a low content of panel glass, crystals form, resulting in an increased open porosity, density and inhomogeneous pore structure. The crystallization can, however, be inhibited by adding calcium phosphate, so enabling the preparation of high-quality foamed glass from flat glass or flat/container-glass mixture. The pore gas is predominantly CO2 and the pressure inside the pores is 0.36–0.47?bar. The reduced effect of the composition on the foaming process suggests that there is a great potential for stabilizing the production of foamed glass and ensuring the product's quality. 相似文献
14.
简单介绍了工业废料的现状,重点阐述了废料在耐火材料中的研究与应用现状,以及废弃料合成耐火原料的方法、再利用途径和发展前景。 相似文献
15.
Glass–ceramics and composites containing aluminum borate whisker crystals were developed using two different approaches: crystallization of an aluminum borosilicate glass or addition of an aluminum borate precursor powder to a glass frit. Two different glass frits were used, a commercially available borosilicate glass or the same aluminum borosilicate glass used in the crystallization experiments. X-ray diffraction analysis showed that Al4B2O9 or Al18B4O33 whiskers formed in all samples, indicating that the glass crystallized significantly with increasing heating temperature, and that the precursor can be effectively be used to generate in situ aluminum borate crystals within glass matrices. However, the samples produced by mixing the aluminum precursor with glass frits contained porosity after processing, indicating that pressureless viscous sintering was not efficient. The hardness of the glass–ceramic did not vary significantly with processing temperature, but the (indentation) fracture toughness measured showed a >100% increase (after heating at 1200 °C), demonstrating that whisker-shaped crystals are effective in increasing the mechanical toughness of the glass matrix. The hardness of the composites showed a dependence on the amount of aluminum borate crystals present. 相似文献
16.
This study examines the thermal decomposition process of the calcium carbonate (calcite powder) contained in test pieces of porous ceramics, of the same composition as that used in manufacturing ceramic wall tile bodies, in the presence of carbon dioxide, in the temperature range 1123–1223 K. The experiments were carried out in a tubular reactor, under isothermal conditions, in a gas stream comprising different concentrations of air and carbon dioxide. 相似文献
17.
Amir Reza HanifiAnnaïk Genson Wynette RedingtonMichael J. Pomeroy Stuart Hampshire 《Journal of the European Ceramic Society》2012,32(4):849-857
The effect of nitrogen and fluorine substitution on the crystallisation of a new generation of oxyfluoronitride glasses in the Ca-Si-Al-O-N-F system has been studied. Glasses were nucleated for 5 h at the nucleation temperature of Tg + 50 °C and crystallised for 10 h at the maximum crystallisation temperature (900-1050 °C depending on the glass composition) determined from differential thermal analysis. For the oxide glass, crystallisation results in formation of wollastonite (CaSiO3), gehlenite (Ca2Al2SiO7) and anorthite (CaAl2Si2O8) along with a small amount of residual glass. For crystallisation of oxyfluoride glasses (0 equiv.% N), when fluorine content increases, cuspidine (Ca4Si2O7F2) is the major crystalline phase at the expense of gehlenite while in oxyfluoronitride glasses containing 20 equiv.% N, gehlenite is always the dominant crystalline phase at different fluorine contents. At constant fluorine content (5 equiv.%), an increase in nitrogen content favours the formation of gehlenite rather than anorthite or wollastonite suggesting that this phase may be able to accommodate N into its crystal structure. While a small amount of nitrogen substitution for oxygen can be assumed in the gehlenite structure, the residual glass in the glass-ceramic is expected to be very N-rich. In terms of properties, hardness is shown to be more sensitive to changes in microstructure, phase morphology and crystal size compared with elastic modulus which is related to the amounts of constituent phases present. 相似文献
18.
《Ceramics International》2023,49(2):1657-1666
Ga-oxide spinel nanocrystals are wide band gap systems, which can be incorporated in a glass matrix by phase separation mechanisms. In suitable conditions, this kind of processes can give rise to transparent nanostructured glass-ceramics with UV excitation and luminescence properties potentially interesting in several technological areas. Nanophase size dispersion and volume fraction have been demonstrated to be controllable, at some extent, by suitable thermal treatments for nucleation and nano-crystallization in low-alkali gallium germanosilicate system. Here we report the results on the role of Al2O3 additions on the microstructure and optical response of the glass-ceramics fabricated in this system. Data of differential scanning calorimetry, X-ray diffraction, transmission electron microscopy, absorption and fluorescence spectroscopy show that Al2O3 addition, up to 4.5 mol%, turns out to have a considerable impact on the size and number density of precipitated nanocrystals, which are solid solutions of γ-Ga2-xAlxO3 resulting from the partial incorporation of Al3+ ions into the crystalline phase. We show that the use of Al2O3 as an additive in the composition of gallium germanosilicates facilitates glass melting and leads to glass-ceramics with significantly modified photoluminescence characteristics such as decay lifetime and integrated intensity of light emission. The possible reasons are discussed. 相似文献
19.
Fluorapatite-containing glass ceramics were synthesized on the basis of the glass-forming system SiO2–Al2O3–P2O5–CaO–CaF2. The introduction of phosphorus and fluorine containing materials, as well as the specific regime of heat treatment of the glasses gave glass ceramic materials with crystalline phases of the apatite group—fluorapatite (Ca10(PO4)6F2), apatite (Ca3(PO4)2), vitlokite (Ca9P6O24), etc. The X-ray phase analysis showed that the main phase in all the glass ceramic samples was fluorapatite. The phase composition, structure and some of the basic properties of the glass ceramic samples were determined. 相似文献
20.
Hua Wang Xianghua Zhang Guang Yang Yinsheng Xu Hongli Ma J.L. Adam Zhen’an Gu Guorong Chen 《Ceramics International》2009
Micro-crystallization of the chalcogenide glass 40GeSe2–50As2Se3–10PbSe has been studied in order to obtain infrared transmitting glass ceramics. Differential scanning calorimetry, IR transmission spectroscopy, X-ray diffraction, scanning electronic microscopy and thermal dilatancy have been used for characterizing the crystallization process. Performing thermal treatment on the glass sample at 250 °C (40 °C higher than Tg) for 10 h, we obtained a glass ceramic containing well-dispersed micro-crystals (<50 nm) and the obviously decreased thermal expansion coefficient. 相似文献