首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2017,43(2):1937-1942
A series of emission-tunable Ca3SiO4Cl2:Bi3+, Li+, Eun+(n =2, 3) (CSC:Bi3+, Li+, Eun+) phosphors have been synthesized via sol-gel method. The X-ray diffraction results indicate that the as-synthesized phosphors crystallize in a low temperature phase with the space group of P21/c. Energy transfer from Bi3+ to Eu3+/Eu2+ exists in CSC:Bi3+, Li+, Eun+ phosphors. Under the excitation of 327 or 365 nm, the Ca2.98−ySiO4Cl2:0.01Bi3+, 0.01Li+, yEun+(y=0.0001–0.002) phosphors show an intense green emission band around 505 nm, while under the excitation of 264 nm, three emission bands centered around 396 nm (Bi3+), 505 nm (Eu2+) and 614 nm (Eu3+) are observed and tunable colors from blue-violet to green or white are achieved in these phosphors by varying the content of Eu. White-light emission with the color coordinate (0.312, 0.328) is obtained in Ca2.978SiO4Cl2:0.01Bi3+, 0.01Li+, 0.002Eun+(n =2, 3). Based on these results, the as-prepared CSC:Bi3+, Li+, Eu2+, Eu3+ phosphors can act as color-tunable and single-phase white emission phosphors for potential applications in UV-excited white LEDs.  相似文献   

2.
《Ceramics International》2016,42(10):11687-11691
In this paper, a series of novel luminescent Sr10−x(SiO4)3(SO4)3O:xEu2+ phosphors with apatite structure were synthesized by a high temperature solid-state reaction. The phase structure, photoluminescence (PL) properties, as well as the PL thermal stability were investigated. Sr9.92(SiO4)3(SO4)3O:0.08Eu2+ phosphor exhibits better thermal quenching resistance, retaining the luminance of 66.55% at 150 °C compared with that at 25 °C. The quenching concentration of Eu2+ in Sr10(SiO4)3(SO4)3O was about 0.08 (mol) with the dipole–quadrupole interaction. The Sr10−x(SiO4)3(SO4)3O:xEu2+ phosphors exhibited a broad-band green emission at 538 nm upon excitation at 396 nm. The results indicate that Sr10−x(SiO4)3(SO4)3O:xEu2+ phosphors have potential applications as near UV-convertible phosphors for white-light UV LEDs.  相似文献   

3.
The Bi4Ti3O12 (BIT) is a well known ferroelectric ceramic within the family of so called Aurivillius phases. The present work shows that when bismuth (Bi3+, r = 0.96 Å) is substituted by trivalent europium (r = 0.95 Å), a solid solution, Bi4−xEuxTi3O12 (BIET), is formed. This solid solution was obtained by coprecipitation and characterized by X-ray diffraction, electron microscopy and density measurements. The solubility limit x was determined, and the variation of the lattice parameters was measured through profile fitting of the whole pattern. In order to establish the europium substitution site, we studied the luminescent properties of the material. The excitation spectra, at room temperature, show a broad band associated with a charge transfer state and with the intrinsic absorption of Bi3+. We found at least two Eu3+ sites, selectively excited. The Eu3+ emission spectra reveal a significant rising of the point symmetry at the rare earth site with respect to the Bi C1, deduced from the crystallographic analysis.  相似文献   

4.
A series of red-emitting phosphors Eu3+-doped Sr3Y(PO4)3 have been successfully synthesized by conventional solid-state reaction, and its photoluminescence properties have been investigated. The excitation spectra reveal strong excitation bands at 392 nm, which match well with the popular emissions from near-UV light-emitting diode chips. The emission spectra of Sr3Y(PO4)3:Eu3+ phosphors exhibit peaks associated with the 5D0  7FJ (J = 0, 1, 2, 3, 4) transitions of Eu3+ and have dominating emission peak at 612 nm under 392 nm excitation. The integral intensity of the emission spectra of Sr3Y0.94(PO4)3:0.06Eu3+ phosphors excited at 392 nm is about 3.4 times higher than that of Y2O3:Eu3+ commercial red phosphor. The Commission Internationale de l’Eclairage chromaticity coordinates, the quantum efficiencies and decay times of the phosphors excited under 392 nm are also investigated. The experimental results indicate that the Eu3+-doped Sr3Y(PO4)3 phosphors are promising red-emitting phosphors pumped by near-UV light.  相似文献   

5.
《Ceramics International》2015,41(6):7766-7772
A series of (1−x)YVO4/xY2O3:Eu3+0.006,Bi3+0.006 (0≤x≤0.54) composite phosphors was synthesized in one step by high temperature solid state reaction and the photoluminescence properties were investigated. By means of co-doping Eu3+ and Bi3+ ions into the composite matrices composed of YVO4 and Y2O3 crystals, the YVO4/Y2O3:Eu3+,Bi3+ phosphor exhibits simultaneously the blue (418 nm), green (540 nm) and orange-red (595, 620 nm) emissions. The broad blue and green emissions are attributed to the 3P11S0 transitions of Bi3+ ion both in Y2O3 and in YVO4 matrices. Moreover, the sharp orange-red emissions are attributed to the 5D07F1,2 transitions of Eu3+ ion in YVO4 matrix. By tuning the mole ratio of YVO4/Y2O3 matrices the white light-emitting could be obtained. The results indicated that when the mole ratio of Y2O3 (x) is at 0.11–0.54 mol, the (1−x)YVO4/xY2O3:Eu3+0.006,Bi3+0.006 phosphors emit white light by combining the blue, green and orange-red emissions under the excitation of 360–370 nm wavelength which matches the emission of the commercial UV-LED diode. This implies that the phosphors may be the promising white light materials with broad absorption band for white light-emitting diodes.  相似文献   

6.
《Ceramics International》2015,41(4):5525-5530
A series of single-phase Eu3+, Tb3+, Bi3+ co-doped LaPO4 phosphors were synthesized by solid-state reaction at 800 °C. Crystal structures of the phosphors were investigated by X-ray diffraction (XRD). A monoclinic phase was confirmed. The excitation (PLE) and emission (PL) spectra showed that the phosphors could emit red light centered at 591 nm under the 392 nm excitation, which is in good agreement with the emission wavelength from near-ultraviolet (n-UV) LED chip (370–410 nm). The results of PLE and PL indicated that the co-doped Tb3+ and Bi3+could enhance emission of Eu3+ and the fluorescent intensities of the phosphors excited at 392 nm could reach to a maximum value when the doping molar concentration of Tb3+ and Bi3+ is about 2.0% and 2.0%, respectively. The co-doping Tb3+ and Bi3+ ions can strengthen the absorption of near UV region. They can also be efficient to sensitize the emission of Eu3+, indicating that the energy transfer occurs from Tb3+ and Bi3+ to Eu3+ ions. From further investigation it can be found that co-doping Tb3+ and Bi3+ ions can also induce excitation energy reassignment between 5D07F1 and 5D07F2 in these phosphors, and result in more energy assignment to 5D07F2 emission in LaPO4:Eu3+, Tb3+, Bi3+. Our research results displayed that La0.94PO4:Eu3+0.02, Tb3+0.02, Bi3+0.02 could be a new one and could provide a potential red-emitting phosphor for UV-based white LED.  相似文献   

7.
In this study, a series of red-emitting Ca3Sr3(VO4)4:Eu3+ phosphors co-doped with La3+ was prepared using the combustion method. The microstructures, morphologies, and photoluminescence properties of the phosphors were investigated. All Ca3Sr3(VO4)4:Eu3+, La3+ samples synthesized at temperatures greater than 700 ℃ exhibited the same standard rhombohedral structure of Ca3Sr3(VO4)4. Furthermore, the Ca3Sr3(VO4)4:Eu3+, La3+ phosphor was effectively excited by near-ultraviolet light of 393 nm and blue light of 464 nm. The strong excitation peak at 464 nm corresponded to the 7F05D2 electron transition of Eu3+. The strong emission peak observed at 619 nm corresponded to the 5D07F2 electron transition of Eu3+. Co-doping with La3+ significantly improved the emission intensity of Ca3Sr3(VO4)4:Eu3+ red phosphors. The optimum luminescence of the phosphor was observed at Eu3+ and La3+ concentrations of 5% and 6%, respectively. Moreover, co-doping with La3+ also improved the fluorescence lifetime and thermal stability of the Ca3Sr3(VO4)4:Eu3+ phosphor. The CIE chromaticity coordinate of Ca3Sr3(VO4)4:0.05Eu3+, 0.06La3+ was closer to the NTSC standard for red phosphors than those of other commercial phosphors; moreover, it had greater color purity than that of all the samples tested. The red emission intensity of Ca3Sr3(VO4)4:0.05Eu3+, 0.06La3+ at 619 nm was ~1.53 times that of Ca3Sr3(VO4)4:0.05Eu3+ and 2.63 times that of SrS:Eu2+. The introduction of charge compensators could further increase the emission intensity of Ca3Sr3(VO4)4:Eu3+, La3+ red phosphors. The phosphors synthesized herein are promising red-emitting phosphors for applications in white light-emitting diodes under irradiation by blue chips.  相似文献   

8.
《Ceramics International》2017,43(17):15107-15114
A series of eulytite-type Sr3Y1-x(PO4)3:xEu3+ (x = 0–0.13) and Sr3-yY(PO4)3:yEu2+ (y = 0–0.10) phosphors were successfully synthesized via gel-combustion and subsequent calcination in O2 and Ar/H2 atmospheres at 1250 °C, respectively. Detailed crystal structure analysis via Rietveld refinement showed that the phosphors were crystallized in the cubic system (space group I-43d, No. 220), in which the Eu3+ and Eu2+ activators reside at the Y3+ and Sr2+ sites, respectively. The trivalent Eu3+ ions (CN = 6) exhibited typical narrow-band luminescence via intra-4f6 transitions, with the red emission at ~ 615 nm being dominant (5D07F2 transition, FWHM = 15.9 ± 0.2 nm). The divalent Eu2+ ions (CN = 6 and 9) showed broad-band luminescence ranging from light-blue to blue via 4f65d1 → 4f7 transitions (FWHM = 115 ± 2 nm). The optimal Eu3+ and Eu2+ concentrations were determined to be 10 at% (x = 0.10) and 7 at% (y = 0.07), respectively, and the mechanisms of concentration quenching were discussed. The excitation/emission properties, fluorescence decay kinetics, CIE chromaticity, and particularly the rarely addressed thermal stability of the phosphors were investigated in detail.  相似文献   

9.
《Ceramics International》2015,41(8):9610-9614
A novel red-emitting phosphor Ca8MgLu(PO4)7:Eu3+ was synthesized by a high-temperature solid-state reaction method. Its crystal structure, photoluminescence emission and excitation spectra, and decay time were investigated in detail. X-ray diffraction (XRD) results indicate that Ca8MgLu(PO4)7 crystallizes in single-phase component with a whitlockite-like structure and the space group R3c of β-Ca3(PO4)2. The emission spectrum shows a dominant peak at 612 nm due to the dipole 5D07F2 transition of Eu3+, and the luminescence intensity keeps increasing with increasing the content of Eu3+ to 100%. The excitation spectrum is coupled well with the emission of near ultraviolet (NUV) LED (380–410 nm). The CIE coordinates of Ca8MgLu(PO4)7:Eu3+ phosphor is (0.654, 0.346), being close to the standard value of National Television Standard Committee (NTSC) for red phosphor, (0.670, 0.330). The internal quantum efficiency of the phosphor is 69% under the excitation of 394 nm. The results show that Ca8MgLu(PO4)7:Eu3+ is a very appropriate red-emitting phosphor with a high ratio of red and orange for NUV-based white LEDs.  相似文献   

10.
《Ceramics International》2017,43(12):9084-9091
This paper reports the preparation of Eu3+ doped Gadolinium oxyorthosilicate (Gd2SiO5:Eu3+) phosphor with different concentration of Eu3+(0.1–2.5 mol%) using the modified solid state reaction method. The synthesis procedure of the Gd2SiO5:Eu3+phosphor using inorganic materials such as Gd2O3, silicon dioxide (SiO2), europium oxide (Eu2O3) and boric acid (H3BO3) as flux is discussed in detail. The prepared phosphor samples were characterized by using X-Ray Diffraction (XRD), Field Emission Gun Scanning Electron Microscopy (FEGSEM), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Photoluminescence (PL) and Thermoluminescence (TL). The Commission Internationale de l′Eclairage(CIE) coordinates were also calculated. The PL emission was observed in the 350–630 nm range for the Gd2SiO5:Eu3+ phosphor. PL excitation peaks were observed at 266, 275, 312 and 395 nm while the emission peaks were observed at 380, 416, 437, 545, 579, 589, 607, 615 and 628 nm. The emission peak at 615 nm was the most intense peak for all the different Eu3+ concentration samples. From the XRD data, using the Scherrer's formula, the average crystallite size of the Gd2SiO5:Eu3+ phosphor was calculated to be 33 nm. TL was carried out for the phosphor after both UV and gamma irradiation. The TL response of the Gd2SiO5:Eu3+ phosphor for the two different radiations was compared and studied in detail. It was found that the present phosphor can acts as a single host for red emission (1.5 mol%) for display devices and light emitting diode (LED) and white light emission for Eu3+(0.1 mol%) and it might be used as a TL dosimetric material for gamma dose detection.  相似文献   

11.
《Ceramics International》2017,43(15):11686-11691
A novel single-phase white-emitting phosphor La10(SiO4)6O3 (LSO): xEu has been synthesized by high-temperature solid-state reaction. Its crystal structure, luminescence properties, fluorescence decay time and oxygen vacancies have been characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectra. XRD result shows a typical oxyapatite structure with the space group of P63/m. Characteristic excitation and emission peaks of Eu2+ and Eu3+ were observed from PL studies. The optimum doping concentration of Eu was found to be 7.5 mol% (x = 0.075). In this work, the lifetimes of Eu3+ and Eu2+ were considerably longer than those from some references. Under the excitation of different near ultraviolet (n-UV) longer wavelengths (λex = 360, 370, and 380 nm), the white light emission can be realized with the CIE chromaticity coordinates (0.3907, 0.3595), (0.3472, 0.3282), and (0.3504, 0.3062) for the phosphor LSO: 0.075Eu. The chromaticity coordinates of the phosphor were all located in the white region. Therefore, it is suggested that the explored LSO: 0.075Eu phosphor can be a good candidate for white light-emitting diodes (W-LEDs) application.  相似文献   

12.
《Ceramics International》2016,42(6):6891-6898
A series of single-phase white-light-emitting phosphors, Eu2+-activated Ba3GdNa(PO4)3F phosphors were synthesized by solid-state reactions. The crystal structure of Ba3GdNa(PO4)3F was been identified by Rietveld refinement of X-ray diffraction pattern. The Eu2+-activated Ba3GdNa(PO4)3F phosphors exhibit broad excitation spectra from 250 to 420 nm, which matched well with the n-UV LED chips. Under the excitation of 365 nm, the emission spectrum almost covered the entire visible region including two emission bands peaked at 472 nm and 640 nm. Three different Eu2+ emission centers in Ba3GdNa(PO4)3F:Eu2+ phosphor were confirmed by their fluorescence decay lifetimes. The optimal concentration of Eu2+ in Ba3GdNa(PO4)3F:xEu2+ was 3 mol% and the corresponding concentration quenching mechanism was verified to be exchange coupling interaction. Furthermore, the white light-emitting diode fabricated with Ba3GdNa(PO4)3F:0.05Eu2+ phosphor and a 370 nm UV chip has a CIE of (0.3267, 0.2976) with a color-rendering index of 78.4 at the CCT of 5287 K.  相似文献   

13.
《Ceramics International》2016,42(5):5737-5742
The novel red-emitting Eu3+ ions activated CaGd2(MoO4)4 phosphors were prepared by a citrate sol–gel method. The X-ray diffraction patterns confirmed their tetragonal structure when the samples were annealed above 600 °C. The photoluminescence excitation spectra of CaGd2(MoO4)4:Eu3+ phosphors exhibited the charge transfer band (CTB) and intense f–f transitions of Eu3+ ion. The optimized annealing temperature and Eu3+ ion concentration were analyzed for CaGd2(MoO4)4:Eu3+ phosphors based on the dominant red (5D07F2) emission intensity under NUV (394 nm) excitation. All decay curves were well fitted by the single exponential function. These luminescent powders are expected to find potential applications such as WLEDs and optical display systems.  相似文献   

14.
Tunable full color emissive LiSr3.99?xDy0.01(BO3)3:xEu3+ (0≤x≤0.09) phosphors peaked at 481 nm (blue), 574 nm (yellow), 592 nm (orange), and 617 nm (red) were synthesized in air by high temperature solid-state reaction route. The as-synthesized phosphors were characterized by X-ray powder diffraction (XRD), photoluminescence excitation (PLE) and photoluminescence (PL) spectra. The PLE spectra in the range from 200 to 500 nm include an Eu–O charge transfer band (CTB) and several 4f–4f transition peaks of Dy3+ and Eu3+, indicating its potential application in white light emitting diodes (LEDs). The effect of Eu3+ concentration on the emission intensity of LiSr3.99?xDy0.01(BO3)3:xEu3+ phosphors was investigated in detail and the optical concentration is found to be x=0.005. The CIE chromaticity coordinates for LiSr3.99?xDy0.01(BO3)3:xEu3+ phosphors are simulated. With an increase in Eu3+ ion concentration, the chromaticity color coordinates can be tuned efficiently from the border of greenish white region to its equal-energy white light point, and eventually to red region. All the results imply that the studied LiSr3.99?xDy0.01(BO3)3:xEu3+ phosphors could be potentially used as white LEDs.  相似文献   

15.
《Ceramics International》2015,41(8):9910-9915
To obtain warm white-light emission, a series of Ca9MgNa(PO4)7:Sr2+, Mn2+, Ln (Ln=Eu2+, Yb3+, Er3+, Ho3+, and Tm3+) phosphors were designed and their photoluminescence properties under near-ultraviolet and near-infrared excitation were studied. For near-ultraviolet excitation, blue-white emission is produced initially in the Eu2+ single-doped Ca9MgNa(PO4)7, whose excitation band can well match with the near ultraviolet LED chip. By introducing Sr2+ ions into Ca9MgNa(PO4)7:Eu2+, the Eu2+ emission band beyond 500 nm is enhanced obviously. Correspondingly, the emitting light color is tuned to nearly white. To generate warm white light further, Mn2+ is doped into the Ca8.055MgNa(PO4)7:0.045Eu2+, 0.9Sr2+ and the correlated color temperature is decreased largely. For near-infrared excitation, the green, red, and blue emissions have been obtained in the Yb3+-Er3+, Yb3+-Er3+, and Yb3+-Er3+ co-doped Ca9MgNa(PO4)7 phosphors, respectively. And warm white light is also produced in the Ca9MgNa(PO4)7:Yb3+, Er3+, Ho3+, Tm3+ under 980 nm excitation.  相似文献   

16.
Eu2+, Mn2+ doped Sr1.7Mg0.3SiO4 phosphors were prepared by high temperature solid-state reaction method. Their luminescence properties were studied. The emission spectra of Eu2+ singly doped Sr1.7Mg0.3SiO4 consist of a blue band (455 nm) and a green band (550 nm). The relative intensities of two emissions varied with Eu2+ concentration. Eu2+ and Mn2+ co-doped Sr1.7Mg0.3SiO4 phosphors emit three color lights and present whitish color. The blue (455 nm) and green (550 nm) emissions are attributed to the transitions of Eu2+, while the red (670 nm) emission is originated from the transition of Mn2+ ion. The results indicate the energy transfer from Eu2+ to Mn2+. The mechanism of the energy transfer is resonance-type energy transfer due to the spectral overlap between the emission of Eu2+and the absorption of Mn2+.  相似文献   

17.
《Ceramics International》2017,43(14):11244-11249
Sr3(PO4)2:Re3+, Li+ (Re = Eu, Sm) red phosphors were prepared via a high temperature solid state reaction, and their structure and luminescence properties were investigated. X-ray diffraction patterns indicate that the phase of as-prepared samples is in good agreement with standard Sr3(PO4)2 structure. Under 395 nm excitation, the emission of Sr3(PO4)2:Eu3+ consists of a strong peak centered at 622 nm and two weak peaks centered at 598 nm and 660 nm, which correspond to 5D07F2, 5D07F1 and 5D07F3 transitions, respectively. Also, the emission spectrum of Sr3(PO4)2:Sm3+ shows three main peaks at 568 nm, 603 nm and 651 nm, which are attributed to 4G5/26HI/2 (I = 5, 7, 9) transitions of Sm3+. Furthermore, luminescence properties of Sr3(PO4)2:Re3+, Li+ (Re = Eu, Sm) samples are enhanced significantly by Li+ ions doping as charge compensator. Results indicate that as-prepared Sr3(PO4)2:Re3+, Li+ (Re = Eu, Sm) could be the potential red phosphors used in white light-emitting diodes.  相似文献   

18.
《Ceramics International》2016,42(16):18324-18332
A series of Eu2+-activated novel phosphor-silicate apatite Sr3LaNa(PO4)2SiO4 phosphors were synthesized by solid-state reaction. The X-ray diffraction (XRD) and Rietveld refinement, diffuse reflectance spectra, luminescent spectra, decay curves and thermal quenching properties were applied to characterize the obtained phosphors. The XRD result revealed that all the samples possessed only a single phase with hexagonal structure and the doping of Eu2+ ions were successfully incorporated into the crystal lattice. The reflectance spectra showed an obvious red-shift of the wavelength from 400 to 700 nm with increasing Eu2+ ion concentration. The three different crystallographic sites of Eu2+ ions had been confirmed by their lifetimes. All the samples exhibited broad absorption bands from 200 to 450 nm, revealing the phosphor-silicate phosphor interesting for application in the near-UV used phosphor-converted LED chips. These results suggested that the Eu2+-activated phosphor-silicate Sr3LaNa(PO4)2SiO4 phosphors have the potential for near-UV pumped white-light-emitting diodes (w-LEDs).  相似文献   

19.
《Ceramics International》2017,43(12):9158-9163
In this account, Bi4Si3O12:Sm3+ and (Bi4Si3O12:Sm3+, Pr3+) red phosphors were prepared by solution combustion method fueled by citric acid at 900 °C for 1 h. The effects of co-doping Pr3+ ions on red emission properties of Bi4Si3O12:Sm3+ phosphors, as well as the mechanism of interaction between Sm3+ and Pr3+ ions were investigated by various methods. X-ray diffraction (XRD) and Scanning electron microscopy (SEM) revealed that smaller amounts of doped rare earth ions did not change the crystal structure and particle morphology of the phosphors. The photoluminescence spectroscopy (PL) indicated that shape and position of the emission peaks of (Bi4Si3O12:Sm3+, Pr3+) phosphors excited at λex=403 nm were similar to those of Bi4Si3O12:Sm3+ phosphors. The strongest emission peak was recorded at 607 nm, which was attributed to the 4G5/26H7/2 transition of the Sm3+ ion. The photoluminescence intensities of Bi4Si3O12:Sm3+ phosphors were significantly improved by co-doping with Pr3+ ions and were maximized at Sm3+ and Pr3+ ions doping concentrations of 4 mol% and 0.1 mol%, respectively. The characteristic peaks of Sm3+ ions were displayed in the emission spectra of (Bi4Si3O12:Sm3+, Pr3+) phosphors excited at respectively λex=443 nm and λex=481 nm (Pr:3H43P2, 3H43P0). This indicated the existence of Pr3+→Sm3+ energy transfer in (Bi4Si3O12:Sm3+, Pr3+) phosphors.  相似文献   

20.
A red long-lasting phosphorescent material, monodisperse Y2O2S: Eu3+, Mg2+, Ti4+ nanospheres have been prepared successfully. Y(OH)(CO3): Eu3+ nanospheres were firstly synthesized via an urea-based homogeneous precipitation technique to serve as the precursor. Nanospheres long-lasting phosphors Y2O2S: Eu3+, Mg2+, Ti4+ were obtained by calcinating the precursor in CS2 atmosphere. XRD investigation shows a pure phase of Y2O2S, indicating no other impurity phase appeared. SEM observation reveals that the structures are nanosphere. The Y2O2S: Eu3+, Mg2+, Ti4+ nanospheres with particle size about 100–150 nm show uniform size and well-dispersed distribution. After irradiation by ultraviolet radiation with 325 nm for 5 min, the phosphor emitted red color long-lasting phosphorescence corresponding to typical emission of Eu3+ ion. The main emission peaks are ascribed to Eu3+ ions transition from 5DJ (J = 0, 1, 2) to 7FJ (J = 0, 1, 2, 3, 4). Both the PL spectra and luminance decay revealed that this phosphor had efficient luminescent and long-lasting properties. It was considered that the red-emitting long-lasting phosphorescence was due to the persistent energy transfer from the traps to the Ti4+ and Mg2+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号