首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
Geopolymer setting is seen to be substantially accelerated by addition of calcium and the objective of this study was to determine the mechanism for this effect by examining metakaolin geopolymers with and without calcium. Solid‐state 27Al NMR tests were used to examine the dissolution extent both qualitatively and quantitatively. Solid‐state 29Si NMR tests were conducted to determine the amount and structure of each phase. Prior to the quantitative tests, chemical extractions were used to facilitate assignment of peaks in each spectrum. On addition of calcium, it was found that both the rate and the extent of metakaolin dissolution were enhanced. Accelerating dissolution increases the Al concentration in solution, thus reducing Si/Al available for geopolymer gel formation and further accelerating the gel formation to cause faster setting. Although C‐A‐S‐H was observed in the calcium mix, no evidence indicated that it is directly involved in setting.  相似文献   

2.
The present study aimed at improving the properties of geopolymer mortars obtained from volcanic ash as a source material. An alkali fusion process was used to promote the dissolution of Si and Al species from the volcanic ash and thus to enhance the reactivity of volcanic ash. Various amount of metakaolin (30%, 40%, 50% and 60% MK by weight) was used to consume the excess alkali needed for the fusion. The amount of amorphous phase was determined both in the volcanic ash and the fused volcanic ash and X-ray diffraction analysis was used to evaluate effect of the alkaline fusion method. Geopolymers were prepared by alkali activation of mixtures of powders of fused volcanic ash, various amount of metakaolin and river sand using a sodium silicate solution as activator. The geopolymer mortars were characterized by determination of setting time, linear shrinkage, scanning electron microscopy and compressive strength. The results of this study indicate that geopolymer mortars synthesized by the fusion method exhibit low setting time (7–15 min), low shrinkage (0–0.42%) and high compressive strength (41.5–68.8 MPa). This study showed that, by enhancing the reactivity of volcanic ash by alkali fusion and balancing the Na/Al ratio through the addition of metakaolin, all volcanic ashes can be recycled as an alternative source material for the production of geopolymers.  相似文献   

3.
Sodium silicate-activated slag-fly ash binders (SFB) and slag-metakaolin binders (SMKB) are room-temperature hardening binders that have excellent mechanical properties and a significantly lower carbon footprint than ordinary Portland cement (OPC). The aim of this study was to use nuclear magnetic resonance (NMR) spectroscopy to study the nanostructure of poorly ordered phases in SFB by varying slag/fly ash ratio, curing time, and curing temperature. Fly ash was completely substituted with metakaolin and the effect of this substitution on the poorly ordered phases was studied. It was observed that the proportion of geopolymer was generally higher in SMKB when compared to SFB. Although C–N–A–S–H and geopolymer coexisted in SFB and SMKB, C–N–A–S–H was the major product phase formed. The mean chain length (MCL) and the structure of C–N–A–S–H gel were estimated as a function of time, temperature, and slag/fly ash ratio. The MCL was found to have a negative correlation with slag/fly ash ratio and Ca/(Si+Al) ratio, but positive correlation with curing temperature. The average Si/Al atom ratios for geopolymers were also estimated. Lastly, the increased proportion of five-coordinated aluminum (Al(V)) in metakaolin resulted in the decreased unreacted metakaolin in the hardened binder but did not increase the geopolymer content.  相似文献   

4.
Environmental scanning electron microscope (ESEM) was used to in situ quantitatively study the hydration process of K-PS geopolymer cement under an 80% RH environment. An energy dispersion X-ray analysis (EDXA) was also employed to distinguish the chemical composition of hydration product. The ESEM micrographs showed that metakaolin particles pack loosely at 10 min after mixing, resulting in the existence of many large voids. As hydration proceeds, a lot of gels were seen and gradually precipitated on the surfaces of these particles. At later stage, these particles were wrapped by thick gel layers and their interspaces were almost completely filled. The corresponding EDXA results illustrated that the molar ratios of K/Al increase while Si/Al decrease with the development of hydration. As a result, the molar ratios of K/Al and Si/Al of hydration products at an age of 4 h amounted to 0.99 and 1.49, respectively, which were close to the theoretical values (K/Al=1.0, Si/Al=1.0 for K-PS geopolymer cement paste). In addition, well-developed crystals could not been found at any ages; instead, spongelike amorphous gels were always been observed.  相似文献   

5.
《Ceramics International》2017,43(2):1819-1829
Currently, many applications require the assembly of different materials to improve their properties in use. This work focuses on the production of a geopolymer binder coating based on metal or agglomerated sand. For this, several compositions based on sodium or potassium and different reactivities of metakaolin and their interactions in the presence of different types of support were studied. The interactions between the binder and substrate were analysed by measurements of the wetting angles. Coating trials conducted over tin-plated copper and bonded sand highlighted the influences of the binder composition and the drying and deposition parameters. Scanning electronic and optical microscopy observations confirm the chemical adhesion between the various components. FTIR spectroscopic analyses have also identified the parameters for obtaining a geopolymer network such as the reactive aluminium concentration (5 a.u.) and the molar Si/Al and M/Al (M=K or Na) ratios (2 and 1.2, respectively). It is therefore possible, by determining the wetting angle, to control the deposition on either a metal or silica sand.  相似文献   

6.
《Ceramics International》2022,48(10):14173-14181
In this study, metakaolin was partially replaced with mineral micropowder to prepare a mineral-micropowder/metakaolin-based geopolymer was prepared under alkali activation, and the compressive and flexural strengths of various geopolymer specimens were determined. Geopolymer reaction kinetics were examined using the Johnson-Mehl-Avrami-Kolmogrov model, and the effects of the mineral-micropowder content on the properties and structure of the metakaolin-based geopolymer were investigated. Results revealed that micropowder addition significantly influenced the mechanical properties, microstructure, and reaction heat of the geopolymer. At a powder content of 30 wt%, the polymer exhibited superior mechanical properties; furthermore, the compressive and flexural strengths of the specimens cured for 28 d were 58.3 MPa and 12.6 MPa, which were 24.1% and 40% higher than those of the control group, respectively. Meanwhile, the geopolymer setting time was significantly reduced because the presence of calcium in mineral micropowder promoted the geopolymerisation reaction. Therefore, the formation of a multi-gel phase considerably enhanced the geopolymer structure.  相似文献   

7.
This work explains the elastic properties of the reactive suspensions of metakaolin in sodium silicate solutions immediately after mixing. The flow properties of the interstitial fluid were obtained by mimicking it with synthetic aluminosilicate gels of different Si/Al molar ratios. By comparing these results with the rheological properties of fresh geopolymer pastes and with the ones of unreactive suspensions, we showed that the early age mechanical properties of geopolymer mixes cannot be explained by the colloidal interactions between metakaolin grains but rather by the formation of a gel with a molar ratio Si/Al < 4.5. In addition, we measured the evolution of the total concentration of tetrahedral Al in the interstitial liquid by static NMR. It was thus evidenced that the afore-mentioned aluminosilicate gel is formed at a very early stage of the geopolymerisation reaction resulting in a heterogeneous suspension with an Al-rich gel formed at the grain boundaries.  相似文献   

8.
Transmission electron microscopy of a geopolymer phase, derived from metakaolin and alkaline silicate solutions and having nominal Na/Al and Si/Al molar ratios of 1 and 2, respectively, showed it to be amorphous on the ∼1 nm scale after curing at 40°C. In samples containing 5 wt% Cs or Sr, Cs inhabited the amorphous phase, whereas Sr was incorporated only partly, being preferentially partitioned to crystalline SrCO3. Heating progressively to dewater the material had little effect on the overall structure for temperatures up to 500°C. From solid-state nuclear magnetic resonance in material cured at near-ambient temperatures, Cs, like Na, was found to be basically associated with pore water, but with significant linkage to the aluminosilicate framework, more so than for Na. Subsequent heating to 300°C increased the linkage of Cs and Na to the framework.  相似文献   

9.
Metakaolin was incrementally replaced (33.3%, 50% and 66.6%) by red ceramic waste in geopolymer formulation to study the effect on geopolymerisation and its resultant properties. The geopolymer binders composed of two calcined aluminosilicates (viz. Metakaolin and Red ceramic waste), NaOH and sodium silicate. In the experimental compositions, metakaolin was replaced gradually up to 66.6% in the clay fraction, the Si/Al increased from 3.36 to 5.16 and Na/Al increased from 0.93 to 1.38. The FTIR spectroscopic studies of geopolymer pastes along with XRD analysis indicated that the red ceramic waste partly reacts with alkali and takes part in geopolymer formation. Replacement of 33.3% metakaolin by the red ceramic waste in geopolymer binder did not reduce the compressive strength with respect to the pure metakaolin geopolymer here. Additional replacement resulted in a drastic decrease in the compressive strength of the geopolymer binder. However, the compressive strength of geopolymer mortars revealed interesting synergy between the amount of binder and particle packing in the mortar. Despite having a lower amount of binder phase, mortars with 33% and 50% red ceramic waste exhibited maximum compressive strength values. This has been attributed to improved particle packing through incorporation of red ceramic waste particles.  相似文献   

10.
The alkaline fusion method was used to enhance the reactivity of volcanic ash for geopolymer synthesis. To that end, different mixtures of fused soda–volcanic ash (fused volcanic ash) were used to assess reactivity for geopolymer synthesis. The amount of amorphous phase was determined both in the volcanic ash and the fused volcanic ash and X-ray diffraction analysis was used to evaluate effect of the alkaline fusion method. Different geopolymer mortars were prepared by alkaline activation of mixtures of powders of fused volcanic ash and metakaolin and river sand using sodium silicate as activator. Metakaolin was considered as consumer of excess of alkali contained in the fused volcanic ash. The geopolymer mortars were characterized by determination of setting time, linear shrinkage, compressive strength and scanning electron microscopy. The amount of amorphous phase and excess of fused soda content of the fused volcanic ash depended on molar ratio of Al2O3/Na2O and played a key role for geopolymer synthesis. The most convenient Al2O3/Na2O molar ratio of fused volcanic ash to produce effective geopolymer mortars ranged between 0.13 and 0.18. This study showed that volcanic ash can be used successfully as an alternative raw material for production of geopolymers via alkaline activation of fused volcanic ash.  相似文献   

11.
Highly porous geopolymers, with homogeneous microstructure, open cells and porosity up to 80 vol%, were fabricated by gel-casting, a process commonly used to produce ceramic foams. Geopolymer foams were prepared by stirring an activated blend of metakaolin and fly ash with a mixture of potassium hydroxide and potassium silicate with Si/K=1.66. The cell size and size distribution of the geopolymer foams could be efficiently adjusted by the control of some parameters such as solid content, surfactant type and content and mixing speed. The influence of each parameter on the porosity and other characteristics of the geopolymer foams were investigated. The foams were evaluated only after heat treatment at 80 °C, which was conducted in order to complete the geopolymerization reactions. The produced components could be heat treated up to 1200 °C in air without melting, if desired.The characteristics (morphology, strength, chemical and thermal resistance) of the geopolymer foams suggest that they could be employed as low cost replacement for highly porous ceramics in applications such as catalysis supports, adsorption and separation, filtration of hot gases and refractory insulation of furnaces. In addition, these components could be considered sustainable, because they reach their final properties after processing at temperatures not exceeding 100 °C and part of the raw materials employed are industrial waste.  相似文献   

12.
The growth of demand for concrete raises concerns about the consumption of natural resources and ordinary Portland cement. Geopolymer composites show promise as a sustainable alternative for conventional cement concrete. Considering the wide range of potential geopolymer composites applications (including suitability for transportation infrastructure, underwater applications, repair and rehabilitation of structures as well as recent developments in 3D printing), the desired fresh and mechanical properties of the geopolymer composite may vary between applications: for example, rapid setting can be a merit for certain applications and a demerit for others. Therefore, the desired fresh and mechanical properties (e.g., workability, setting time, compressive strength, etc.) can be controlled for a given geopolymer source material through its partial substitution by natural or by-product materials. Recognizing the critical role of various replacement materials in enhancing the potential applications of geopolymer composites, the present review was undertaken to quantify and understand the effect of partial replacement by fly ash, metakaolin, kaolin, red mud, slag, ordinary Portland cement, and silica fume on the setting time, workability, compressive strength and flexural strength of various source materials addressed in the literature. The review also provides insights into research gaps in the field to promote future research.  相似文献   

13.
Environment friendly geopolymer is a new binder which gained increased popularity due to its better mechanical properties, durability, chemical resistance, and fire resistance. This paper presents the effect of nano silica and fine silica sand on residual compressive strength of sodium and potassium based activators synthesised fly ash geopolymer at elevated temperatures. Six different series of both sodium and potassium activators synthesised geopolymer were cast using partial replacement of fly ash with 1%, 2%, and 4% nano silica and 5%, 10%, and 20% fine silica sand. The samples were heated at 200°C, 400°C, 600°C, and 800°C at a heating rate 5°C per minute, and the residual compressive strength, volumetric shrinkage, mass loss, and cracking behaviour of each series of samples are also measured in this paper. Results show that, among 3 different NS contents, the 2% nano silica by wt. exhibited the highest residual compressive strength at all temperatures in both sodium and potassium‐based activators synthetised geopolymer. The measured mass loss and volumetric shrinkage are also lowest in both geopolymers containing 2% nano silica among all nano silica contents. Results also show that although the unexposed compressive strength of potassium‐based geopolymer containing nano silica is lower than its sodium‐based counterpart, the rate of increase of residual compressive strength exposed to elevated temperatures up to 400°C of potassium‐based geopolymer containing nano silica is much higher. It is also observed that the measured residual compressive strengths of potassium based geopolymer containing nano silica exposed at all temperatures up to 800°C are higher than unexposed compressive strength, which was not the case in its sodium‐based counterpart. However, in the case of geopolymer containing fine silica sand, an opposite phenomenon is observed, and 10% fine silica sand is found to be the optimum content with some deviations. Quantitative X‐ray diffraction analysis also shows higher amorphous content in both geopolymers containing nano silica at elevated temperatures than those containing fine silica sand.  相似文献   

14.
Geopolymer ceramics undergo a series of thermal phase transitions, progressing from an amorphous geopolymer gel to a crystalline phase, and eventually to an amorphous glass phase as the temperature increases. However, there is a lack of mechanism understanding regarding to the crystallization process and the subsequent thermal degradation. Here, we fundamentally investigated the kinetics of nepheline formation in Na-based geopolymer systems and its thermal stability up to 1400°C. Nepheline crystallization is controlled by bulk nucleation and three-dimensional crystal growth based on the Avrami factor of 4.64, where the activation energy of nepheline formation is 350.59 kJ/mol. High thermal stability of geopolymer ceramics is achieved due to the appearance of nepheline up to 1400°C with the Si/Al ratio ranging from 1.40 to 1.94, while melting and amorphous structure are formed above a higher Si/Al ratio of 2.22. The nature of sintering for geopolymer ceramics consists of shrinkage, expansion and shrinkage corresponding to dehydroxylation, crystallization, and densification, leading to a thermal shrinkage of 21% at 1400°C.  相似文献   

15.
《Ceramics International》2022,48(9):11924-11939
Manufacturing inorganic thermal insulation materials with superior properties such as low thermal conductivity (k < 0.1 W/mK) and high mechanical properties in terms of adhesion strength is critical for energy efficiency in energy-intense industries. Geopolymer-based composites composing of hollow glass microspheres (HGMs), waste fly ash (FA), and metakaolin (MK) were successfully applied on hot (T~300 °C) metal surfaces via spray deposition technique. The effect of Si/Al and Na/Al mole ratios and HGM loading on geopolymer composites' physical, microstructural, thermal, and adhesion strength properties were explored. The best composite composition was obtained when Si/Al mole ratio, Na/Al mole ratio, and HGM loading were 2.5, 1.0, and 10 wt %, respectively. This composition achieved an HGM/geopolymer composite material with low thermal conductivity (k ~ 0.05 W/mK), high adhesion strength (~5.0 MPa), and high stability under immersion in water and vibration environments (particularly exposed to water). The results showed that HGM/geopolymer composites could be used as a thermal insulation material in energy-intense industries.  相似文献   

16.
Geopolymer was prepared with various SiO2/Na2O mole ratios and mechanical tests and microstructural analyses are performed to investigate how the constituents affect its mechanical behavior in distinct stress states. Laboratory results reveal that the SiO2/Na2O ratio affects the polymerization by influencing the formation of silicon Q4(mAl) structures. The proportion of Q4(4Al) correlates positively with the mechanical characteristics of geopolymer, and the proportion of Q4(2Al) correlates negatively with the mechanical characteristics of geopolymer. The proportions of Q4(mAl) affect the stress–strain curve and the failure modes of geopolymer under various confining pressures. Three types of stress–strain curves with different peak strengths and plastic deformations are obtained. Incomplete polymerization generates a geopolymer with an imperfect microstructure, which determines the plastic deformation while unloading. Polymerization of a geopolymer affects its apparent cohesion and friction angle. However, the friction-induced strength declines drastically when the failure mode changes from the split mode to the shear mode.  相似文献   

17.
地质聚合物作为新兴绿色无机胶凝材料,因独特的三维网络骨架结构而兼具矿物和高分子材料的特性.分别以固体废弃物粉煤灰和偏高岭土为原料,采用碱激发方式制备地质聚合物试块,考察养护28 d后试块在5%HCl、10%NaOH、5%MgCl2+5%NaCl和5%H2 SO4(均为质量分数)溶液中浸泡1~84 d的耐化学侵蚀能力.X...  相似文献   

18.
《Ceramics International》2017,43(2):2325-2332
In this paper graphite/metakaolin was first ball-milled to get homogeneous powder, which was then mixed with potassium silicate solution through mechanically stirring. Post curing, we got graphite/geopolymer composites with graphite to geopolymer ratio from 0 to 18 and part the samples were further dealt with heat treatment at 600 °C. Effects of the graphite content on the mechanical properties and microwave absorption properties of the composites were systematically investigated. The results proved that when graphite to geopolymer ratio is not higher than 12, graphite dispersed homogeneously in the composites. However, graphite agglomeration was noted when graphite to geopolymer ratios are 15 and 18. With the increase in graphite to geopolymer ratio, flexural strength and fracture toughness of the composites first increased, reaching the peak value and then decreased. When the graphite to geopolymer ratio is 12, the composite showed the highest flexural strength and fracture toughness, which should be explained by the mixing rule of composites since the mechanical properties of graphite are much higher than geopolymer matrix. With the increase in graphite content, the dielectric constants of the composite increased gradually, but the magnetic constants nearly kept unchanged. It implied that the main microwave absorbing mechanism would be dielectric loss of the composites. The maximum wave reflection loss showed similar trend to the mechanical properties of composites. It reached the peak value when graphite to geopolymer ratio is 12 and then started to decline, which might also be related to the graphite agglomeration. After 600 °C heat treatment, slight decline of the reflect loss peak and obvious decrease on the thickness corresponding to the maximum reflection loss were observed.  相似文献   

19.
Sustainable alkali activation of pumice from Turkish origin was studied by a partial replacement of metakaolin and/or fumed silica additives. Following the characterization of as-received pumice by X-ray fluorescence spectroscopy, x-ray diffraction, and nuclear magnetic resonance spectroscopy, a series of powder mixtures were prepared by introducing metakaolin and/or fumed silica (8, 14, and 20 M) into 1 M of the pumice. The mixtures were then dissolved in 11 M NaOH or sodium silicate solutions. The slurries were poured into polyacetal molds to obtain geopolymer samples for mechanical testing and cured in a constant 50°C temperature in a humidity oven for 48 h and then left for 1 week to undergo additional curing at ambient temperature. The microstructural, mechanical, and thermal properties of the final geopolymer samples were determined by XRD, scanning electron microscopy, Weibull analysis of 3-point flexural and compressive tests and thermal conductivity measurements. Results showed that all the Weibull values were best for 14 M of metakaolin and/or fumed silica. The metakaolin-added pumice yielded higher compressive strengths of (53.78 ± 33.30 MPa) than fumed silica (10.87 ± 4.04 MPa) and fumed silica plus metakaolin (41.22 ± 5.16 MPa). Thermal conductivities (0.19–0.46 Wm–1K–1) were also comparable to the thermal conductivity of metakaolin-based geopolymers.  相似文献   

20.
地质聚合物是由硅铝酸盐材料通过碱激发形成,具有网络结构和无定形性质的胶凝材料。由于地质聚合物具有优于普通硅酸盐水泥的力学性能,并且制备过程中CO2排放量较少等优点,被认为是硅酸盐水泥的良好替代品。尽管相当部分的研究者认为地聚物的耐久性也要好于普通硅酸盐水泥,但其他研究者对此持怀疑态度并认为很多方面还需进一步的研究。本文回顾了近几年有关地聚物耐久性研究的现状和进展,总结和讨论了地聚物的吸水性、碳化、硫酸盐侵蚀、酸腐蚀、碱-集料反应和氯离子渗透等耐久性能及其作用机理的研究成果,并提出了现有研究存在的主要问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号