首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2020,46(6):7122-7130
This study examines three novel approaches for enhancing the thermoelectric (TE) properties of atomic-layer-deposited (ALD) ZnO thin films: 1) Hf-doping, which preserved the crystallinity of ZnO and provided effective phonon scattering owing to Hf's similar atomic radius to and large mass difference with Zn, leading to high power factor (PF) and low thermal conductivity (κ); 2) controlling the distribution of Hf into an alternating scattered phase/clustered phase superlattice, which balanced the high PF of the scattered phases with the low κ of the clustered phases, while providing significant energy-filtering effect to raise the Seebeck coefficient; 3) introducing 18O/16O periodicity into the Hf:ZnO films—by alternately using H216O and H218O as oxidants in the ALD processes, which further suppressed κ without compromising PF. The combination of the three approaches resulted in a maximum improvement in ZT of ~1600% over that of the undoped ZnO.  相似文献   

2.
《Ceramics International》2017,43(10):7784-7788
The thermoelectric transport properties of atomic layer deposited (ALD) gallium doped zinc oxide (GZO) thin films were investigated to identify their potential as a thermoelectric material. The overall thermoelectric properties, such as the Seebeck coefficient and electrical conductivity, were probed as a function of Ga concentration in ZnO. The doping concentration was tuned by varying the ALD cycle ratio of zinc oxide and gallium oxide. The GZO was deposited at 250 °C and the doping concentration was modified from 1% to 10%. Sufficient thermoelectric properties appeared at a doping concentration of 1%. The crystallinity and electronic state, such as the effective mass, were investigated to determine the enhancement of the thermoelectric properties. The efficient Ga doping of GZO showed a Seebeck coefficient of 60 μV/K and an electrical conductivity of 1808.32 S/cm, with a maximum power factor of 0.66 mW/mK2.  相似文献   

3.
In this study, Al2O3/CrAlSiN multilayer coatings with various periods were prepared using a hybrid process involving overlapping magnetron sputtering of CrAlSiN and atomic layer deposition (ALD) of Al2O3. The influence of the number of Al2O3 layers on the mechanical properties, corrosion behavior and oxidation characteristics of the coatings was studied using nano/micro indentation, electrochemical corrosion, and high temperature static oxidation tests. The results show that the multilayer structure can effectively prevent crack propagation during the coating and subsequently increase the coating toughness. A substantial improvement in the resistance to electrochemical and oxidation corrosion was observed in the Al2O3/CrAlSiN multilayer coatings and increasing the number of Al2O3 layers dramatically increases the corrosion durability. The Al2O3 ALD layers are expected to inhibit the diffusion of corrosive substances such as ions and oxygen and the increase of the Al2O3 layer number decreases the diffusion fluxes of the coating elements to the surface and limit the oxide growth, resulting in the evolution of the oxidation produces from irregular particles to nano-walls/fibers. It is supposed that the PVD/ALD hybrid process may open a new hard coating design concept by providing a superior toughness and corrosion/oxidation resistance.  相似文献   

4.
Highly porous alumina particles with precise wall thickness control were synthesized by atomic layer deposition (ALD) of alumina on highly porous poly(styrene-divinylbenzene) (PS-DVB) particle templates. Alumina ALD was carried out using alternating reactions of trimethylaluminum and water at 33 °C. The growth rate of alumina was ∼0.3 nm per coating cycle. The wall thickness can be precisely controlled by adjusting the number of ALD coating cycles. Thermo-gravimetric analysis, X-ray diffraction, nitrogen adsorption, scanning electron microscopy, and transmission electron microscopy were used to characterize the fabricated porous alumina particles. The effect of number of ALD coating cycles and calcination temperature on the mesoporous structure of the alumina particles was investigated. γ-Alumina was formed at temperature above 600 °C. Porous alumina particles with a surface area of 80-100 m2/g were obtained and thermally stable at 800 °C. The pore volume of the porous particles can be as high as 1 cm3/g after calcination at 800 °C. Such porous alumina particles may find wide application in nanotechnology and catalysis.  相似文献   

5.
Alumina supported cobalt catalysts were prepared by atomic layer deposition (ALD) of cobalt acetylacetonate precursors (Co(acac)2 and Co(acac)3). The main modes of interaction between the acetylacetonate precursors and the support were found to be the exchange reaction between the alumina OH-groups and the acac-ligands of the precursor and dissociative adsorption on coordinatively unsaturated Al3+ sites. The amount of precursor that could adsorb on the support was determined by steric hindrance. Samples were prepared using 1–5 reaction cycles, i.e. subsequent precursor addition (Co(acac)2) and calcination, resulting in catalysts containing ca. 3–10 wt.% Co. Samples were also prepared where the last calcination step was omitted, i.e. uncalcined catalysts. Calcination at 450 °C decreased the reducibility of the Co(acac)2/Al2O3 catalysts due to formation of a cobalt oxide phase strongly interacting with the support and aluminate type surface species. The reducibility increased with metal loading on both calcined and uncalcined catalysts; however the reducibility of the calcined catalysts remained lower than of the uncalcined ones. The dispersion was found to be lower on the calcined catalysts. The cobalt particle sizes on the calcined samples was ca. 8 nm and on the uncalcined 4–5 nm, for cobalt loadings of ca. 6–10 wt.%. Catalytic activity was tested by gas phase hydrogenation of toluene in temperature programmed mode (30–150 °C).  相似文献   

6.
《Ceramics International》2021,47(20):28521-28527
Layered O3 type oxides exhibit promising prospects as high-performance cathodes for sodium-ion batteries (SIBs) due to their low cost and high theoretical capacities. Nevertheless, the intrinsic surface composition and bulk structure degradation upon cycling presents a huge obstacle to stable sodium-ion storage/transportation. Besides, the effective surface decoration on layered O3 oxides is still challenging through conventional wet chemical route owing to their extraordinarily high surface sensitivities. Herein, a typical O3 type layered oxide of NaNi0.5Mn0.5O2 (NNMO) was selected and successfully encapsulated by precisely controlled Al2O3 layers via atomic layer deposition (ALD) technology. With the optimally controlled Al2O3 thickness of 3 nm, the surface regulated NNMO delivers a highly reversible capacity of 73.6 mA h g-1, with a significantly improved capacity retention of 68.0% after 300 cycles at 0.5 C, and a superior rate capability of 65.8 mA h g-1 at 10 C. Further air sensitivity tests demonstrate that the protective layer could effectively mitigate the generation of sodium-based impurities on NNMO, and reduce the surface sensitivities. Both chemical and electrochemical aging tests confirm the contribution of Al2O3 coating layer in alleviating ion dissolution as well as stabilizing the structure and morphology of NNMO. Based on regulating the surface of O3 type layered oxides utilizing ALD technique, this work supplies an effective and facile strategy to overcome the challenges from fast structure degradation and electrochemical property decay, which not only highlights the significance and effectiveness of surface engineering in secondary batteries, but also sheds light on accurate interface construction and regulation for active electrode materials, particularly for those sensitive to ambient atmosphere.  相似文献   

7.
The ease of Te sublimation from Bi2Te3-based alloys significantly deteriorates thermoelectric and mechanical properties via the formation of voids. We propose a novel strategy based on atomic layer deposition (ALD) to improve the thermal stability of Bi2Te3-based alloys via the encapsulation of grains with a ZnO layer. Only a few cycles of ZnO ALD over the Bi2Te2.7Se0.3 powders resulted in significant suppression of the generation of pores in Bi2Te2.7Se0.3 extrudates and increased the density even after post-annealing at 500 °C. This is attributed to the suppression of Te sublimation from the extrudates. The ALD coating also enhanced grain refinement in Bi2Te2.7Se0.3 extrudates. Consequently, their mechanical properties were significantly improved by the encapsulation approach. Furthermore, the ALD approach yields a substantial improvement in the figure-of-merit after the post-annealing. Therefore, we believe the proposed approach using ALD will be useful for enhancing the mechanical properties of Bi2Te3-based alloys without sacrificing thermoelectric performance.  相似文献   

8.
ZnO/Al2O3 multilayers were prepared by alternating atomic layer deposition (ALD) at 150°C using diethylzinc, trimethylaluminum, and water. The growth process, crystallinity, and electrical and optical properties of the multilayers were studied with a variety of the cycle ratios of ZnO and Al2O3 sublayers. Transparent conductive Al-doped ZnO films were prepared with the minimum resistivity of 2.4 × 10−3 Ω·cm at a low Al doping concentration of 2.26%. Photoluminescence spectroscopy in conjunction with X-ray diffraction analysis revealed that the thickness of ZnO sublayers plays an important role on the priority for selective crystallization of ZnAl2O4 and ZnO phases during high-temperature annealing ZnO/Al2O3 multilayers. It was found that pure ZnAl2O4 film was synthesized by annealing the specific composite film containing alternative monocycle of ZnO and Al2O3 sublayers, which could only be deposited precisely by utilizing ALD technology.  相似文献   

9.
In this paper, polyethyleneterephthalate (PET) films with and without plasma pretreatment were modified by atomic layer deposition (ALD) and plasma-assisted atomic layer deposition (PA-ALD). It demonstrates that the Al2O3 films are successfully deposited onto the surface of PET films. The cracks formed on the deposited Al2O3 films in the ALD, plasma pretreated ALD, and PA-ALD were attributed to the energetic ion bombardment in plasmas. The surface wettability in terms of water contact angle shows that the deposited Al2O3 layer can enhance the wetting property of modified PET surface. Further characterizations of the Al2O3 films suggest that the elevated density of hydroxyl -OH group improve the initial growth of ALD deposition. Chemical composition of the Al2O3-coated PET film was characterized by X-ray photoelectron spectroscopy, which shows that the content of C 1s reduces with the growing of O 1s in the Al2O3-coated PET films, and the introduction of plasma in the ALD process helps the normal growth of Al2O3 on PET in PA-ALD.  相似文献   

10.
In this study, Al2O3 workpieces were vacuum brazed by using Ni-45Ti binary alloy. The interfacial microstructure evolution of the joints obtained at different brazing temperatures was investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The bonding strength of the joints was measured by shear testing. The results indicated that Ni2Ti4O and AlNi2Ti were the main reaction products in the joint areas. Moreover, the Ti2Ni intermetallic compound formed in the brazing seam. The typical layer structure of the brazed joints was Al2O3/AlNi2Ti/Ni2Ti4O/Ti2Ni + NiTi/Ni2Ti4O/AlNi2Ti/Al2O3. With the brazing temperature increasing, the thickness of the Ni2Ti4O reaction layer adjacent to the Al2O3 substrate increased significantly, while the AlNi2Ti phase had a tendency to dissolve with the brazing temperature increasing. The mechanism for the microstructure evolution was also discussed. The maximum shear strength of 125.63±4.87 MPa of the joints was obtained when brazed at 1350 °C for 30min. The fracture occurred hardly in the interface between Al2O3 and Ni-45Ti filler alloy.  相似文献   

11.
CuAlO2 is a technologically important material having diverse applications, including superior thermoelectric properties. Its unique crystallographic structure manifests an anisotropic environment for the charge carriers and phonons, which is considered to be the reason for the enhancement of the thermopower. To exploit this novel property, a controlled sol-gel deposition technique is adopted to realize highly c-axis-oriented growth of CuAlO2 thin film on Si and glass substrates. Thermoelectric measurements are performed in such a way that the carriers are confined along the a-b plane of the nanocrystal, which is parallel to the substrate. This allows a two-dimensional confinement of the charge carriers, leading to enhanced thermoelectric properties. Additionally, the temperature-dependent electrical characterizations depict two different charge-transport regimes with a cross-over at 360 K. The low-temperature region corresponds to the mobility-activated small-polaron conduction and the high-temperature region belongs to the semiconductor-type carrier-density-activated conduction. Calculation of polaron activation energy from low-temperature regime indicates considerable influence of band carriers (hole) on the polaronic levels, due to which the above-mentioned transition is manifested. Calculations of activation and Fermi energy from high-temperature regime reveal a deep acceptor level and shallow Fermi level, which is typical of a non-degenerate semiconductor with acceptors not fully ionized at room temperature.  相似文献   

12.
The (ZnO)kIn2O3 system is interesting for applications in the fields of thermoelectrics and opto-electronics. In this study we resolve the complex homologous phase evolution with increasing temperature in polycrystalline ceramics for k = 5, 11 and 18 and its influence on the microstructural development and thermoelectric properties. The phase formation at temperatures above 1000 °C is influenced by the local ZnO-to-In2O3 ratio in the starting-powder mixture. While the Zn5In2O8 equilibrium phase for k = 5 is formed directly after sintering at 1200 °C, the formation of the k = 11 and k = 18 equilibrium phases proceeds at higher temperatures by diffusion between the initially formed phases, the lower k Zn5In2O8/Zn7In2O10 and the higher k ZnkIn2Ok+3 (9 < k < ∞). Such phase formation affects the sintering and grain growth, and consequently, with the degree of structural and compositional homogeneity, also the thermoelectric characteristics of the (ZnO)kIn2O3 ceramics.  相似文献   

13.
《Ceramics International》2015,41(7):8360-8366
Impedance spectroscopy was applied to 2-dimensional graphene materials that were thermally grown on copper substrates to quantitatively monitor the quality of the as-grown graphene materials without the subsequent transfer process. The presence of the graphene layer prevents the dissolution of the metallic copper elements in the corrosive electrolyte and provides an interface between the ionic electrolyte and electronic graphene/copper materials. The highest impedance appears at the graphene/electrolyte to be associated with electrochemically robust graphene materials, i.e., the as-grown graphene materials subjected to atomic layer deposition of Al2O3. Such an effect is attributed to the anti-corrosive protection of graphene materials and the defect-curing function of Al2O3 in graphene materials. The impedance-based information can be exploited in-situ without the use of any destructive approaches to evaluate the electrical perfectness vulnerable to preparation environments.  相似文献   

14.
The thermoelectric properties of aluminum-doped tin oxide (ATO) thin films synthesized by thermal atomic layer deposition (ALD) were studied with respect to the aluminum concentration. The overall aluminum content in each layer was modulated by adjusting the relative number of tin oxide (SnO2) and aluminum oxide (Al2O3) growth cycles, where a sequential process involving n cycles of SnO2 growth followed by 1 cycle of Al2O3 deposition was performed (building up a super-cycle). The electrical conductivity (620 S/cm), free carrier concentration (1.23x1021 cm-3), and power factor (0.49 mW/K2m) increase until their maximum values are reached when the Al content is approximately 1.50 at% of the cations, and decrease as more Al is added in. On the other hand, the Seebeck coefficient decreases monotonically as the Al content increases up to about 2.88 at%, and begins to increase with further Al doping. Here the thermoelectric efficiency is therefore determined primarily by the free carrier concentration, while the Seebeck coefficient appears to be influenced by the overall crystal structure.  相似文献   

15.
《Ceramics International》2017,43(7):5693-5701
Self-aligned and equal-spaced zinc oxide (ZnO) nanotube arrays were fabricated with anodic aluminum oxide (AAO)-assisted growth and the ALD technique. The near band-edge (NBE) emission was strongly affected by the nanotube's geometrical parameters, such as a packing density and thickness of the nanotube walls. The NBE emission was further enhanced with Al2O3 coating. The effect was analyzed by X-ray photoelectron spectroscopy (XPS) and ascribed to the surface defect passivation and a ZnAl2O4 spinel formation. The NBE emission enhancement was greater in ZnO nanotubes with thicker walls. A smaller UV enhancement factor was explained by less uniform and integral Al2O3 coverage of the ZnO nanotubes with thinner walls; this, possibly induced a variation of the Al2O3 refractive index along the nanotubes. As a result, the optical conditions at the ZnO/Al2O3/air interfaces was changed and the light extraction efficiency was reduced in the latter samples.  相似文献   

16.
Using high pressure and high temperature (HPHT) technology to improve the thermoelectric properties of oxides is a feasible solution. To further understand the micro-physical mechanism improving the thermoelectric performance of ZnO in a higher pressure environment, the effects of α and γ lattice structure Al2O3 (α-Al2O3, γ-Al2O3) on doped ZnO were systematically studied. ZnO samples with different Al doping ratios (α-x, γ-x; x = 0.02, 0.04, 0.06, 0.08) were prepared by HPHT. Test results show that the high pressure and high temperature synthesis method effectively improves the solid solubility of α-Al2O3 and γ-Al2O3 in ZnO, among which γ-Al2O3 is more easily dissolved into the zinc oxide crystal lattice. Under the same doping ratio, the electronic conductivity of the sample synthesized with γ-Al2O3 is higher than that of the sample synthesized with α-Al2O3. In addition, the ZnAl2O4 phase precipitated out of the sample with increased Al doping. Although the ZnAl2O4 phase decreases the electrical properties of the sample, a small amount of ZnAl2O4 is uniformly dispersed in the ZnO sample, which can inhibit the growth of crystal grains, and assist grain refinement. The optimized high pressure sintering temperature was 1123 K, and the zT value of γ-0.04 was 0.17 at 973 K.  相似文献   

17.
《Ceramics International》2021,47(22):31583-31589
MgO films were deposited on Si via atomic layer deposition (ALD) using Mg(EtCp)2 and H2O precursors and their thermal stability was examined as a function of the post-deposition annealing (PDA) temperature. The characteristic self-limiting behavior of the ALD process was confirmed by changing several parameters, such as precursor pulsing times, deposition temperature, and number of cycles. The exceptional resulting step coverage was verified on a patterned wafer with a high aspect ratio. The band gap and dielectric constant of the as-deposited ALD-MgO film were extracted to be approximately 7.5 eV and 8.4, respectively, and were stable up to the PDA temperature of 700 °C. However, considerable outward diffusion of the underlying Si atoms toward MgO started to occur above 700 °C, and most of the MgO film was converted to an amorphous Mg-silicate phase at 900 °C with a thin layer of remaining MgO on top.  相似文献   

18.
Porous polypropylene hollow fiber (PPHF) membranes are widely used in liquid purification.However,the hydrophobicity of polypropylene (PP) has limited its applications in water treatment.Herein,we demonstrate that,for the first time,atomic layer deposition (ALD) is an effective strategy to conveniently upgrade the filtration performances of PPHF membranes.The chemical and morphological changes of the deposited PPHF membranes are characterized by spectral,compositional,microscopic characterizations and protein adsorption measurements.Al2O3 is distributed along the cross section of the PP hollow fibers,with decreasing concentration from the outer surface to the inner surface.The pore size of the outer surface can be easily turned by altering the ALD cycles.Interestingly,the hollow fibers become much more ductile after deposition as their elongation at break is increased more than six times after deposition with 100 cycles.The deposited membranes show simultaneously enhanced water permeance and retention after deposition with moderate ALD cycle numbers.For instance,after 50 ALD cycles a 17% increase in water permeance and one-fold increase in BSA rejection are observed.Moreover,the PP membranes exhibit improved fouling-resistance after ALD deposition.  相似文献   

19.
《Ceramics International》2022,48(13):18803-18810
Atmospheric pressure spatial atomic layer deposition (AP S-ALD)-derived Al2O3 films were investigated on the growth temperatures (100 °C ~ 200 °C) and demonstrated as the gate insulator for IGZO thin film transistor (TFT) applications. When the growth temperature increases to 200 °C, growth per cycle (GPC) and refractive index of the Al2O3 films were 1.33 Å/cycle and 1.63, respectively. The film density also increased from 2.55 g/cm3 to 2.79 g/cm3 on the growth temperature, which decreasing the carbon impurities of the Al2O3 film (100 °C: 3.57 at%, 150 °C: 1.73 at%, 200 °C: N/A). In addition, the impurity and low growth temperature may degrade not only film surface roughness, but also electrical characteristics. As the buffer and gate insulator Al2O3 layers, the IGZO TFT were fabricated on a polyimide substrate. The IGZO TFTs with the Al2O3 layers showed excellent device performances: 52.48 cm2/V.sec of field effect mobility, ?3.09 ± 0.14 of threshold voltage, and 0.14 ± 0.01 subthreshold swing. In addition, the TFT exhibited excellent bias reliability and mechanical bending stability. This highly stability will be attributed to AP S-ALD Al2O3 acting as an excellent insulator.  相似文献   

20.
Ga2O3(ZnO)m (m = integer) homologous compounds are naturally occurring nanostructured materials. Their intrinsically low thermal conductivity makes them attractive for thermoelectric applications. High density Ga2O3(ZnO)m (m = 9, 11, 13, and 15) single phase ceramics were prepared by solid-state reaction. Nano-sized, twin-like V-shaped boundaries parallel to b-axis (apex angle ∼ 60°) were observed for all compositions. Atomic resolution Z-contrast imaging and EDS analysis for m = 15 showed segregation of Ga ions at the interface of V-shaped twin boundaries. Thermal and charge transport properties depend on the value of m. Compositions with m = 9 exhibited very low lattice thermal conductivity of 2 to 1.5 W/m.K at 300 K–900 K; compositions with m=15 showed improved power factor of 140 μW/m. K2 at 900 K leading to a thermoelectric figure of merit (ZT value) of 0.055. This study explores the structural variants and routes to improve the thermoelectric properties of these materials  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号