首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Potential application of high hydrostatic pressure processing (HPP) as a method for virus inactivation was evaluated. A 7-log10 PFU/ml hepatitis A virus (HAV) stock, in tissue culture medium, was reduced to nondetectable levels after exposure to more than 450 MPa of pressure for 5 min. Titers of HAV were reduced in a time- and pressure-dependent manner between 300 and 450 MPa. In contrast, poliovirus titer was unaffected by a 5-min treatment at 600 MPa. Dilution of HAV in seawater increased the pressure resistance of HAV, suggesting a protective effect of salts on virus inactivation. RNase protection experiments indicated that viral capsids may remain intact during pressure treatment, suggesting that inactivation was due to subtle alterations of viral capsid proteins. A 7-log10 tissue culture infectious dose for 50% of the cultures per ml of feline calicivirus, a Norwalk virus surrogate, was completely inactivated after 5-min treatments with 275 MPa or more. These data show that HAV and a Norwalk virus surrogate can be inactivated by HPP and suggest that HPP may be capable of rendering potentially contaminated raw shellfish free of infectious viruses.  相似文献   

2.
The effectiveness of hydrostatic pressure processing (HPP) for inactivating viruses has been evaluated in only a limited number of studies, and most of the work has been performed with viruses freely suspended in distilled water. In this work, HPP inactivation of freely suspended and shellfish-associated bacteriophage T7 was studied. T7 was selected in hopes that it could serve as a model for animal virus behavior. Clams (Mercenaria mercenaria) and oysters (Crassostrea virginica) were homogeneously blended separately and inoculated with bacteriophage T7. The inoculated bivalve meat and the freely suspended virus samples were subjected to HPP under the following conditions: 2, 4, and 6 min at 241.3, 275.8, and 344.7 MPa pressure and temperatures of 29.4 to 35, 37.8 to 43.3, and 46.1 to 51.7 degrees C. Reductions of 7.8 log PFU (100% inactivation) were achieved for freely suspended T7 at 344.7 MPa for 2 min at 37.8 to 43.3 degrees C. At 46.1 to 51.7 degrees C, T7 associated with either clams or oysters was inactivated at nearly 100% (>4 log PFU) at all pressure levels and durations tested. These results indicate that T7 is readily inactivated by HPP under the proper conditions, may be made more susceptible to HPP by mixing with shellfish meat, and may serve as a viable model for the response of several animal viruses to HPP.  相似文献   

3.
The effect of high pressure processing (HPP) compared to Holder pasteurization (HoP) (62.5 °C, 30 min), on the inactivation of cytomegalovirus (CMV) and hepatitis A virus (HAV) inoculated human milk pools (n = 10) and culture media (n = 3) was studied. Samples were retained as untreated controls, treated by HoP (62.5 °C, 30 min) or with one of six different HPP protocols (350 MPa, 500 MPa, 600 MPa for 8- or 10-min at <10 °C). Macronutrient concentration and lactoferrin were measured to confirm milk quality. Both HPP and HoP reduced CMV by >4.8-log PFU/mL and >0.9-log PFU/mL in culture medium and human milk, respectively. HoP reduced HAV by 3.4-log PFU/mL and 3.1-log PFU/mL in culture medium and human milk, respectively. HPP treatments of 500 or 600 MPa reduced HAV by >5.7-log PFU/mL and >4-log PFU/mL in culture medium and in human milk, respectively. Macronutrients (fat, total protein, carbohydrate) and energy composition was not affected by any treatment. Lactoferrin concentration decreased by 35% ± 21% (SD) after HoP, but not HPP.Industrial relevanceThis study confirms that HPP is effective in inactivating representative enveloped and non-enveloped viruses in human milk and reducing bacterial load, with no adverse effect on macronutrient and energy composition. For these reasons, evidence it reduces bacteria, and increased efficiency in which milk can be processed, HPP shows great promise in replacing HoP in human milk banking.  相似文献   

4.
Bajovic B  Bolumar T  Heinz V 《Meat science》2012,92(3):280-289
Pressure can be applied by high hydrostatic pressure, better known as high pressure processing (HPP), or by hydrodynamic pressure (HDP) in the form of shockwaves to alter quality parameters, such as shelf-life and texture of meat and meat products. The aim of this review is to give an overview of the use of pressure in the meat industry and to highlight its usage as a method to inactivate microorganisms but also a novel strategy to alter the structure and the quality parameters of meat and meat products. Benefits and possibilities of the technologies are presented, as well as how to overcome undesired product changes caused by HPP. The use of hydrodynamic shockwaves is briefly described and a promising newly developed industrial prototype for the generation of shockwaves by underwater explosion is presented.  相似文献   

5.
ABSTRACT: The objective of this study was to determine the influence of hydrodynamic pressure processing (HDP) and aging on the processing characteristics and final meat quality of moisture-enhanced pork loins. Boneless pork loins (n = 24) were split into 3 portions and assigned treatments: control (non-HDP treated, brine-injected), HDP treated before brine-injection, or HDP treated after brine-injection. Pork loins were injected with a salt/phosphate/water solution to 110% of original weight on day 0, intermittently tumbled 3 h, and then held overnight. Meat quality and protein characteristics were measured on days 1 and 8. HDP-treated loins had greater (P < 0.05) brine retention after overnight equilibration and a higher (P < 0.05) processing yield than controls. Warner–Bratzler shear force and expressible moisture decreased (P < 0.0001) with aging from days 1 to 8, but were not significantly affected by either HDP treatment. When the drip loss data from HDP treatments were pooled, HDP samples had lower drip loss values than controls. L* and b* measurements exhibited significant HDP by aging interaction effects, but a* was not influenced by either HDP or aging. Myofibrillar protein solubility and gel electrophoresis measurements of protein degradation were influenced by aging treatments. Data from this study suggest that HDP may have beneficial effects on the processing and final product quality of moisture-enhanced pork loins. Practical Application: This study demonstrates that hydrodynamic pressure processing (HDP) is an effective postharvest technology for improving the processing and meat quality characteristics of moisture-enhanced pork loin products, benefiting both meat processors and consumers.  相似文献   

6.
The effect of high pressure processing (HPP) on the survival of verotoxigenic Escherichia coli (VTEC) in two types of Norwegian type dry-fermented sausages was studied. Two different types of recipes for each sausage type were produced. The sausage batter was inoculated with 6.8 log10 CFU/g of VTEC O103:H25. After fermentation, drying and maturation, slices of finished sausages were vacuum packed and subjected to two treatment regimes of HPP. One group was treated at 600 MPa for 10 min and another at three cycles of 600 MPa for 200 s per cycle. A generalized linear model split by recipe type showed that these two HPP treatments on standard recipe sausages reduced E. coli by 2.9 log10 CFU/g and 3.3 log10 CFU/g, respectively. In the recipe with higher levels of dextrose, sodium chloride and sodium nitrite E. coli reduction was 2.7 log10 CFU/g in both treatments. The data show that HPP has a potential to make the sausages safer and also that the effect depends somewhat on recipe.  相似文献   

7.
In this study the potential of using selected bacteriophages as pressure surrogates for hepatitis A virus (HAV) and Aichi virus (AiV) was investigated. The coliphages included, T4, MS2, Qβ, λ imm 434, λ cI 857 and λ cI 857A. T4 displayed similar pressure responses as HAV and was chosen for further study. The most pressure-resistant phage, MS2, was selected as a possible surrogate to estimate AiV inactivation by high pressure processing (HPP). HAV, AiV and their selected bacteriophage surrogates were treated at a range of pressures and times in three different media. All four were treated in phosphate-buffered saline (PBS), artificial seawater (ASW) or oyster slurry (OS) at 250, 400 or 500 MPa for 1, 5 or 10 min at 20 °C. While T4 had similar pressure resistance to HAV under conditions of high (500 MPa) and lower pressure (250 MPa), inactivation trends were very different following treatment at 400 MPa and when the viruses were suspended in OS. MS2 showed similar resistance as AiV but at ambient treatment temperatures only. The highest levels of inactivation of MS2 were achieved at 60 °C and 500 MPa. AiV was eliminated at 60 °C for 5 min at ambient pressure, but > 3 log survived exposure to 60 °C at 500 MPa. This degree of protection by pressure may be important in determining the mechanisms of pressure and heat resistances in other viruses.Industrial relevanceGreater knowledge of the responses of viruses and their surrogates to high pressure will aid in the validation of new high pressure-processed food that may be at risk to contamination from HAV or other enteric viruses.  相似文献   

8.
The effects of age on high pressure resistance of the ascospores of heat resistant moulds Byssochlamys fulva, B. nivea, Neosartorya fischeri and N. spinosa were determined. Ascospores were harvested from cultures grown for 3–15 weeks at 30 °C on malt extract agar. Following filtration and determination of concentration, the ascospores were subjected to high pressure processing (HPP) at 600 MPa for 10 min in 0.1 M citrate phosphate buffer (pH 4 and 6) and mango puree (pH 5). The results supported our hypothesis that age (maturity) affects high pressure resistance of ascospores of heat resistant moulds. A reduction of log10 2.5 cfu mL− 1 was achieved for three week old ascospores ofB. nivea whereas for nine week old ascospores only a half log reduction was achieved. Similar results were observed for B. nivea and N. fischeri. The HPP treatment caused activation of ascospores of N. spinosa, with older ascospores showing increased activation.

Industrial relevance

The observation of activation of some ascospores by HPP, indicates that HPP alone is insufficient for elimination of these problematic spoilage microorganisms. HPP would need to be combined with other hurdles in order to produce high quality pressure-treated shelf-stable fruit products.  相似文献   

9.
Grape seed extract (GSE) is reported to have antibacterial properties with few current studies on antiviral activity. Recently, we reported the effects of GSE against foodborne viral surrogates in vitro. This study evaluated the application of GSE (commercial Gravinol-S) against hepatitis A virus (HAV) and human norovirus surrogates, feline calicivirus (FCV-F9) and murine norovirus (MNV-1), on model produce. Washed and air-dried lettuce (3 × 3 cm2) and jalapeno peppers (25–30 g) were inoculated with FCV-F9, MNV-1, or HAV at high (∼7 log10 PFU/ml) or low (∼5 log10 PFU/ml) titers, and treated with 0.25, 0.5, 1 mg/ml GSE or water for 30 s to 5 min. Treatments were stopped/diluted with cell-culture media containing 10% heat-inactivated fetal bovine serum and evaluated using plaque assays. At high titers, FCV-F9 was reduced by 2.33, 2.58, and 2.71 log10 PFU on lettuce; and 2.20, 2.74, and 3.05 log10 PFU on peppers after 1 min using 0.25, 0.50, and 1 mg/ml GSE, respectively. Low FCV-F9 titers could not be detected after 1 min at all three GSE concentrations. Low titer MNV-1 was reduced by 0.2–0.3 log10 PFU on lettuce and 0.8 log10 PFU on peppers, without reduction of high titer. GSE at 0.25–1 mg/ml after 1 min caused 0.7–1.1 and 1–1.3 log10 PFU reduction for high and low HAV titers, respectively on both commodities. Instrumental color analysis showed no significant differences between treated and untreated produce. GSE shows potential for foodborne viral reduction on produce as part of hurdle technologies.  相似文献   

10.
The application of high pressure processing (HPP) has shown its potential to reduce quality losses of many fruit and vegetable products in comparison to other traditional technologies such as cooking. To identify further opportunities of the application of high pressures in vegetable pieces, the sensory perception and correlation to quality parameters were investigated on carrot sticks (used as model product) submitted to high pressure treatments (600 MPa, 2 min) and compared to other traditional treatments such as sous-vide (90 °C, 5 min), cooked (100 °C, 20 min) and unprocessed (raw). The results indicated that HPP carrots were not different from sous-vide carrots in many parameters such as: sweetness, green flavour and crunchy texture. Furthermore, high pressure carrots showed significantly higher intensity perception of orange colour and fibrousnesses to the rest of the treatments, while similar brightness to cooked carrots and green odour to raw.Throughout 14 days of storage at 4 °C, there was clear evidence that HPP samples could be preserved better in comparison to the rest of the treatments by not presenting any production of acetic acid (used as quality deterioration reference).Overall, sensory evaluation showed correlations to many quality measurements in this study, indicating similarities in hardness versus crunchiness perception and juiciness versus moisture perception between HPP and sous-vide samples. GC/MS and GC/MS-O results were also in agreement in most cases when identifying carrot volatile changes between the different treatments and the identification of the development of new compounds formed.Finally, the tissue structure observed by using Cryo-SEM microscopy, supported the similarities (between HPP and sous-vide) and differences (between treatments) of the quality parameters analysed in this research.

Industrial Relevance

Previous reports on HPP for food applications indicated that this technology will only be commercially successful if added value is achieved or if the product characteristic can be retained at a higher level as compared to thermally/traditionally processed foods. This work provides information on textural and chemical (volatile) changes as well as the sensorial perception of carrots which have undergone high pressure processing, as well as how those changes compare to the quality of both raw and thermally processed carrots. These results may be generally applicable to what could be expected to happen to other ‘hard’ tissue vegetable products produced by high pressure processing, over a refrigerated storage time of 14 days.  相似文献   

11.
In recent years, raw fruits and vegetables have frequently been involved in foodborne transmission to humans of enteric viruses, particularly noroviruses and hepatitis A virus (HAV). Although viral contamination can occur during all steps of food processing, primary production is a critical stage on which prevention measures must be focused to minimize the risk of infection to consumers. Postharvest sanitation may be a valid technological solution for decreasing the bacterial load on fresh raw material, but there is a lack of data concerning the effectiveness of this process on enteric viruses. In this study, we compared the survival of two human norovirus surrogates, the feline calicivirus (FCV), and the murine norovirus (MNV-1), and of HAV on lettuce after water washing with bubbles and with or without ultrasound, and washing with bubbles in the presence of active chlorine (15 ppm) or peroxyacetic acid-based disinfectant (100 ppm). Cell culture and quantitative RT-PCR assays were used to detect and quantify the viruses on the surface of the lettuce after the sanitizing treatments. Levels of viral inactivation on the lettuce leaves were not significantly different between washing with bubbles and washing with bubbles plus ultrasound and were not dependant on the quantification method. A simple washing without disinfectant resulted in a decrease of approximately 0.7 log units in the quantity of virus detected for HAV and FCV and of 1.0 log unit for MNV-1.In the experimental set-up including a washing step (with or without ultrasound) followed by washing for 2 min in the presence of disinfectants, 15 ppm of active chlorine was found more effective for inactivating FCV (2.9 log units) than HAV and MNV-1 (1.9 log units and 1.4 log units, respectively) whereas 100 ppm of peroxyacetic-based biocide was found effective for inactivating FCV (3.2 log units) and MNV-1 (2.3 log units), but not HAV (0.7 log units). Quantitative RT-PCR results indicated that the presence of viral RNA did not correlate with the presence of infectious viruses on disinfected lettuce, except for MNV-1 processed with chlorine (15 ppm). In comparison with water washing, a substantial additional decrease of genomic FCV titer (1.1 log units) but no significant reduction of the genomic titers of HAV and MNV-1 were found on lettuce treated with chlorine (15 ppm). No significant effect of the disinfection step of lettuce with peroxyacetic-based biocide (100 ppm peracetic acid) was found by qRT-PCR on all genomic viral titers tested. This study illustrates the necessity of determining the effectiveness of technological processes against enteric viruses, using a relevant reference such as HAV, in order to reduce the risk of hepatitis and gastroenteritis by exposure to vegetables.  相似文献   

12.
R. Escriu  M. Mor-Mur   《Food microbiology》2009,26(8):834-840
Several variables can influence the effects of high hydrostatic pressure processing (HPP), but the role of fat in the treated sample is still uncertain. We designed a model by which controlling the known variables we could elucidate that role. We applied 400 MPa for 2 min to minced chicken samples inoculated with Listeria innocua and Salmonella Typhimurium mixed with 10% and 20% of three fat types with different fatty acid composition. Microbial counts were performed during 60 days of refrigerated storage either at 2 °C or 8 °C.Immediately after HPP bacterial growth was independent of the type and percentage of fat content, but a possible effect of type of fat could be observed after 60 days of cold storage.  相似文献   

13.
In this study, the effectiveness of cold atmospheric plasma (CAP) in inactivating murine norovirus (MNV/human norovirus surrogate) and hepatitis A virus (HAV) on aerosol-inoculated dark red Willamette raspberries was explored. Pulsed positive corona discharge system fed by synthetic air was used for the production of CAP. Raspberries were treated for 1, 3, 5, 7, and 10 min at 25 W. Application of CAP enabled a 4 log10 infectivity reduction in <5 min for MNV and approximately 10 min for HAV (from starting level of 6.91 and 7.84 log10 PFU/mL, respectively). Viral genome copies reduction of 3.18 log10 for MNV and 4.32 for HAV were found from starting level of 5.76 and 6.47 log10 gc/μL, respectively. CAP treatment did not result in significant degradation of fruit color, an important quality attribute. The study demonstrated CAP as an efficient post-harvest decontamination method to reduce viral load in raspberries without significantly affecting its quality parameters.Industrial relevanceDue to the fast-processing paces required in the raspberry industry, it is difficult to assure the complete microbiological safety of this fruit. Cold atmospheric plasma is a practical, environmentally-friendly, non-thermal tool for the effective reduction of microbial pathogens. The model developed in this study demonstrated that CAP treatment of fresh raspberries not only inactivated hazardous enteric viruses in a short time (10 min) but also unaffected fruit color stability. The simplicity of described CAP design and low-cost inputs (air and electricity) enable the commercial application of inexpensive plasma chambers for continuous surface decontamination of large volumes of raspberries without bringing processing to a standstill.  相似文献   

14.
《Meat science》2011,87(4):1005-1009
The effect of high pressure processing (HPP) on the survival of verotoxigenic Escherichia coli (VTEC) in two types of Norwegian type dry-fermented sausages was studied. Two different types of recipes for each sausage type were produced. The sausage batter was inoculated with 6.8 log10 CFU/g of VTEC O103:H25. After fermentation, drying and maturation, slices of finished sausages were vacuum packed and subjected to two treatment regimes of HPP. One group was treated at 600 MPa for 10 min and another at three cycles of 600 MPa for 200 s per cycle. A generalized linear model split by recipe type showed that these two HPP treatments on standard recipe sausages reduced E. coli by 2.9 log10 CFU/g and 3.3 log10 CFU/g, respectively. In the recipe with higher levels of dextrose, sodium chloride and sodium nitrite E. coli reduction was 2.7 log10 CFU/g in both treatments. The data show that HPP has a potential to make the sausages safer and also that the effect depends somewhat on recipe.  相似文献   

15.
A recently proposed Gompertz model (GMPZ) approach describing microbial inactivation kinetics by high‐pressure processing (HPP) incorporated the initial microbial load (N0) and lower microbial quantification limit (Nlim), and simplified the dynamic effects of come‐up time (CUT). The inactivation of Listeria innocua in milk by HPP treatments at 300, 400, 500, and 600 MPa and pressure holding times (thold) ≤10 min was determined experimentally to validate this model approach. Models based on exponential, logistic‐exponential, and inverse functions were evaluated to describe the effect of pressure on the lag time (λ) and maximum inactivation rate (μmax), whereas the asymptote difference (A) was fixed as = log10(N0/Nlim). Model performance was statistically evaluated and further validated with additional data obtained at 450 and 550 MPa. All GMPZ models adequately fitted L. innocua data according to the coefficient of determination (R≥ 0.95) but those including a logistic‐exponential function for μmax(P) were superior (R≥ 0.97). These GMPZ versions predicted that approximately 597 MPa is the theoretical pressure level (Pλ) at which microbial inactivation begins during CUT, mathematically defined as λ (Pλ) = tCUT, and matching the value observed on the microbial survival curve at 600 MPa. As pressure increased, predictions tended to slightly underestimate the HPP lethality in the tail section of the survival curve. This may be overseen in practice since the observed microbial counts were below the predicted log10 N values. Overall, the modeling approach is promising, justifying further validation work for other microorganisms and food systems.  相似文献   

16.
Inactivation of hepatitis A virus (HAV) in Dulbecco's modified Eagle medium with 10% fetal bovine serum was studied at pressures of 300, 350, and 400 MPa and initial sample temperatures of -10, 0, 5, 10, 20, 30, 40, and 50 degrees C. Sample temperature during pressure application strongly influenced the efficiency of HAV inactivation. Elevated temperature (> 30 degrees C) enhanced pressure inactivation of HAV, while lower temperatures resulted in less inactivation. For example, 1-min treatments of 400 MPa at -10, 20, and 50 degrees C reduced titers of HAV by 1.0, 2.5, and 4.7 log PFU/ml, respectively. Pressure inactivation curves of HAV were obtained at 400 MPa and three temperatures (-10, 20, and 50 degrees C). With increasing treatment time, all three temperatures showed a rapid initial drop in virus titer with a diminishing inactivation rate (or tailing effect). Analysis of inactivation data indicated that the Weibull model more adequately fitted the inactivation curves than the linear model. Oscillatory high-pressure processing for 2, 4, 6, and 8 cycles at 400 MPa and temperatures of 20 and 50 degrees C did not considerably enhance pressure inactivation of HAV as compared with continuous high-pressure application. These results indicate that HAV exhibits, unlike other viruses examined to date, a reduced sensitivity to high pressure observed at cooler treatment temperatures. This work suggested that slightly elevated temperatures are advantageous for pressure inactivation of HAV within foods.  相似文献   

17.
The individual effects of pH (pH 3 to 8), NaCl (0 to 21%), sucrose (0 to 70%), and whey protein (0 to 2%) on pressure resistance of feline calicivirus (FCV) in Dulbecco's modified Eagle medium with 10% fetal bovine serum were determined. At pH 3 through 8, the virus was more resistant to pressure at a pH of < or = 5.2. For FCV samples with sucrose (up to 40%) or NaCl (up to 12%), the amount of FCV inactivated by pressure was inversely proportional to the sucrose or NaCl concentration. For example, a treatment of 250 MPa at 20 degrees C for 5 min reduced the FCV titer by 5.1 log PFU/ml without added sucrose and by 0.9 log PFU/ml with 40% sucrose. Reduced pressure sensitivity with increasing NaCl and sucrose concentrations was not a simple function of water activity. Different PFU reductions were observed for NaCl and sucrose samples with equivalent water activity. When protein at concentrations up to 2% did not provide a protective effect. The combined effect of NaCl and sucrose at 4 and 20 degrees C on pressure resistance of FCV also was examined. When both NaCl and sucrose were added to the FCV stock, they had an additive effect on increasing the pressure resistance of FCV. The individual (6% NaCl or 20% sucrose) and combined (6% NaCl plus 20% sucrose) resistance effects did not abrogate enhanced inactivation for pressure treatments at 4 degrees C compared with those at 20 degrees C. Aqueous matrix compositions, in particular different concentrations of NaCl and sucrose or different pH values, can substantially alter the efficiency of virus inactivation by high pressure processing.  相似文献   

18.
Hepatitis A virus (HAV), feline calicivirus (FCV, a surrogate for non-culturable norovirus), and poliovirus (PV), suspended in buffered cell culture media, were treated with pressures ranging from 200 to 600 MPa at ambient temperature for between 30 and 600 s. HAV was inactivated by > 1-log10 tissue culture infectious dose 50% mL 1 (TCID50 mL 1) and > 2-log10 TCID50 mL 1 after 600 s treatment with 300 and 400 MPa, respectively, and was undetectable (> 3.5-log10 TCID50 mL 1 reduction) within 300 s treatment with 500 MPa. FCV was inactivated by 3.6-log10 TCID50 mL 1 after 120 s treatment with 300 MPa, and was undetectable after 180 s treatment with 300 MPa. PV was the most resistant with little or no substantial reduction in titre after 300 s treatment with 600 MPa. The studies were designed to determine the efficacy of using high pressure to inactivate enteric viruses and generate inactivation data to assist in determining appropriate process criteria for safe shellfish production.Industrial relevanceThe high pressure treatment of raw oysters has proved commercially successful, due in part to a marked increase in the product’s shelf life, yet little alteration of its organoleptic properties. Illnesses from human enteric viruses such as hepatitis A virus and norovirus have traditionally been associated with shellfish consumption, and for this reason, studies have examined the stability of enteric viruses under high pressure. However, kinetic data on enteric virus stability under pressure is needed by processors to better understand the response of viruses throughout the entire treatment time. The kinetic data obtained in this study may be useful for processors wishing to alter high pressure processing conditions to ensure a high quality product in terms of organoleptic and microbiological properties.  相似文献   

19.
This study was conducted to evaluate the inactivation of murine norovirus (MNV-1) and hepatitis A virus (HAV) by pulsed ultraviolet (UV) light. MNV-1 was used as a model for human norovirus. Viral suspensions of about 106 PFU/ml were exposed to pulses of UV light for different times and at different distances in a Xenon Steripulse device (model RS-3000C). Inactivation studies were also carried out on 1-cm2 stainless steel and polyvinyl chloride disks with 105 PFU/ml. Inactivation of MNV-1 and HAV at 10.5 cm from the UV source was greater on inert surfaces than in suspension. The presence of organic matter (fetal bovine serum) reduced the effectiveness of pulsed light both in suspension and on surfaces. However, 2-s treatment in the absence of FBS completely inactivated (5 log reduction) the viral load at different distances tested, whether in suspension (MNV-1) or on disks (MNV-1 and HAV). The same treatment in the presence of fetal bovine serum (5%) allowed a reduction of about 3 log. This study showed that short duration pulses represent an excellent alternative for inactivation of food-borne viruses. This technology could be used to inactivate viruses in drinking water or on food-handling surfaces.  相似文献   

20.
Cranberry juice (CJ) and cranberry proanthocyanidins (PAC) are widely known for their antibacterial, antiviral, and pharmacological activities. The effect of CJ and cranberry PAC on the infectivity of foodborne viral surrogates, murine norovirus (MNV-1), feline calicivirus (FCV-F9), MS2 (ssRNA) bacteriophage, and ?X-174 (ssDNA) bacteriophage after 0 min to 1 h at room temperature was evaluated. Viruses at titers of ∼5 log10PFU/ml were mixed with equal volumes of CJ at pH 2.6, CJ at pH 7.0, 0.30 mg/ml CJ PAC, 0.60 mg/ml PAC, or water and incubated for 0, 10, 20, 30, 40, 50 min, and 1 h at room temperature. Infectivity was determined using standard plaque assays. The viral reduction rates of the four tested viruses were found to vary considerably. Among the tested viruses, FCV-F9 titers were decreased the most by ∼5 log10PFU/ml within 30 min. MS2 titers were decreased the least by only ∼1 log10PFU/ml after 1 h with CJ at pH 2.6 and 0.30 mg/ml PAC, and ∼0.5 log10PFU/ml with CJ at pH 7.0 and 0.15 mg/ml PAC. MNV-1 and ?-X174 showed comparable titer reductions which was between that of FCV-F9 and MS2. In most cases, viral reduction within the first 10 min of treatment accounted for ≥50% of the total reduction. Transmission electron microscopy on FCV-F9 treated with CJ and PAC revealed structural changes. This study shows potential of using natural bioactive compounds for controlling foodborne viral diseases. Further studies are necessary to elucidate the mechanism of action of CJ components and to understand the differences in viral titer reduction profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号