首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The squeeze casting of an Al-7 wt pct Si alloy was carried out in order to investigate the conditions for the formation and the prevention of macrosegregation. The effects of process parameters such as applied pressure, die temperature, pouring temperature, delay time, degassing, and inoculation on the formation of macrosegregation were investigated, in correlation with the evolution of macrostructure and shrinkage defects. Three critical applied pressures were defined, based on the experimental results for the squeeze-cast Al-7 wt pct Si. The first is the critical applied pressure under which shrinkage defects form (P SC). The second is the critical applied pressure above which macrosegregates form (P MS). The third is the critical applied pressure above which and under which minor segregation forms. (P m and P MS, respectively). With the concept of these three critical pressures, an experimental diagram describing the optimum process conditions was proposed for obtaining sound squeeze castings. It was concluded that sound castings without macrosegregation and shrinkage defects can only be obtained when the applied pressure is in the range where P SC < P<P m (<P MS). Both degassing and inoculation treatments greatly enhanced the soundness of the castings. It was also found that the pouring temperature and the delay time should not exceed T D-critical and t D-critical, respectively, in order to achieve sound castings.  相似文献   

2.
Predicting the occurrence of hot tears in the direct-chill (DC) casting of aluminum alloys by numerical simulation is a crucial step for avoiding such defects. In this study, eight hot tearing criteria proposed in the literature have been implemented in a finite-element method simulation of the DC casting process and have been evaluated. These criteria were based on limitations of feeding, mechanical ductility, or both. It is concluded that six criteria give a higher cracking sensitivity for a higher casting velocity and that five criteria give a higher cracking sensitivity for the center location of the billet. This is considered in qualitative accordance with casting practice. Seven criteria indicate that use of a ramping procedure (lower casting speed during start-up phase) does not make a significant difference. However, in industrial practice, this is a common procedure, needed for avoiding hot cracking. Only one criterion is in qualitative accordance with casting practice, but it fails to quantitatively predict the hot tearing occurrence during DC casting.  相似文献   

3.
In this article, the stresses, strains, sump depth, mushy zone length, and temperature fields are calculated through the simulation of the direct-chill (DC) casting process for a round billet by using a finite-element method (FEM). Focus is put on the mushy zone and solid region close to it. In the center of the billet, circumferential stresses and strains (which play a main role in hot cracking) are tensile close to the solidus temperature, whereas they are compressive near the surface of the billet. The stresses, strains, depth of sump, and length of mushy zone increase with increasing casting speed. They are maximum in the start-up phase and are reduced by applying a ramping procedure in the start-up phase. Stresses, strains, depth of sump, and length of mushy zone are highest in the center of the billet for all casting conditions considered.  相似文献   

4.
The elevated temperature deformation characteristics of a rapidly solidified Al-8.4 wt pct Fe-3.6 wt pct Ce alloy have been investigated. Constant true strain rate compression tests were performed between 523 and 823 K at strain rates ranging from 10−6 to 10−3 s−1. At temperatures below approximately 723 K, the alloy is significantly stronger than oxide dispersion strengthened (ODS) aluminum. However, at higher temperatures, the strength of the Al-Fe-Ce alloy falls rapidly with increasing temperature while ODS aluminum exhibits an apparent threshold stress. It is shown that particle coarsening cannot fully account for the reduction in strength of the Al-Fe-Ce alloy at elevated temperatures. The true activation energy for deformation of the Al-Fe-Ce alloy at temperatures between 723 and 773 K is significantly greater than that for self-diffusion in the matrix. This is unlike the behavior of ODS alloys, which contain nondeformable particles and exhibit true activation energies close to that for self-diffusion in the matrix. Since abnormally high true activation energies for deformation are also exhibited by materials containing deformable particles, such as γ strengthened superalloys, it is concluded that elevated temperature deformation in ythe Al-Fe-Ce alloy involves deformation of both the matrix and the precipitates. The loss of strength of the Al-Fe-Ce alloy appears to be related to a reduction in strength of at least some of the second phase particles at temperatures above 723 K. Formerly Research Assistant, Department of Materials Science and Engineering, Stanford University.  相似文献   

5.
The transient behavior of mushy-zone velocities, primary dendrite arm spacings, and microsegregation effects have been investigated for an Al-4.5 wt pct Cu alloy by instantaneous velocity changes in a standard Bridgman furnace. After suddenly imposed velocity changes, the mushy-zone velocities, dendrite arm spacings, and compositions exponentially adjust to new steady-state values. Good agreement was found between the transient mushy-zone positions and velocities and predictions from the theoretical model of Saitou and Hirata. The primary dendrite arm spacings appear to adjust to changed velocity conditions about as rapidly as the mushy-zone velocity adjusts. Steady-state arm spacings agree very well with corresponding steady-state data from the literature. However, the observed composition profiles in the dendrite core and the interdendritic liquid appear to adjust more slowly than the corresponding adjustment of the mushy-zone velocity and arm spacings. Our observation of the sluggish response of the compositional profiles is consistent with an estimated Lewis number of 9.4 × 103 for the aluminum-copper system. The diffusivity of heat, thus, greatly exceeds the diffusivity of solute in this system. These results indicate that testing for the steady state during directional solidification experiments by looking for constant primary dendrite arm spacings can lead to errors, since the microsegregation profiles adjust more slowly than the spacings. It is suggested that constancy of composition also be tested for critical experiments investigating steady-state microsegregation effects.  相似文献   

6.
The quench sensitivity of cast Al-7 wt pct Si-0.4 wt pct Mg alloy   总被引:3,自引:0,他引:3  
The effect of quenching condition on the mechanical properties of an A356 (Al-7 wt pct Si-0.4 wt pct Mg) casting alloy has been studied using a combination of mechanical testing, differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). As the quench rate decreases from 250 °C/s to 0.5 °C/s, the ultimate tensile strength (UTS) and yield strength decrease by approximately 27 and 33 pct, respectively. The ductility also decreases with decreasing quench rate. It appears that with the peak-aged condition, both the UTS and yield strength are a logarithmic function of the quench rate,i.e., UTS orσ y =A logR +B. The termA is a measure of quench sensitivity. For both UTS and yield strength of the peak-aged A356 alloy,A is approximately 32 to 33 MPa/log (°C/s). The peak-aged A356 alloy is more quench sensitive than the aluminum alloy 6063. For 6063,A is approximately 10 MPa/log (°C/s). The higher quench sensitivity of A356 is probably due to the high level of excess Si. A lower quench rate results in a lower level of solute supersaturation in the α-Al matrix and a decreased amount of excess Si in the matrix after quenching. Both of these mechanisms play important roles in causing the decrease in the strength of the peak-aged A356 with decreasing the quench rate.  相似文献   

7.
8.
Limited results on the fatigue of pseudo-elastic material indicate that, as a class, these materials should have truly outstanding fatigue properties. To check this, the mechanisms of cyclic deformation and fracture have been studied in Cu−Al−Ni chosen because its transformation behavior is well understood. Since this alloy is notoriously brittle, pulsating compression fatigue tests were carried out in polycrystalline material. The details of the stress-induced martensite behavior were studied byin situ video observations. The alloy was found to undergo cyclic hardening and failure eventually occurred by multiple nucleation of cracks at grain boundaries, by a mechanism similar in principle to that which occurs in regular metals cycled at high plastic strains. The Coffin-Manson law was obeyed.  相似文献   

9.
10.
The high temperature oxidation of Al-Mg alloys is characterized by the rapid formation of thick, micro-crystalline oxide films. The oxidation kinetics of an Al-4.2 wt pct Mg alloy under dry and moist 20 pct O2/Ar have been measured, and oxide films grown on bulk specimens complementary to the weight gain curves have been characterized using electron optical techniques (TEM, SEM). Initial oxidation takes place by the nucleation and growth of primary crystalline oxides at the oxide/metal interface and by the formation of secondary oxides of MgO by the reduction of the original amorphous over-layer of γ-Al2O3 by Mg. Subsequent oxidation is dominated by the further nucleation and growth of primary oxides. The presence of water vapor in the oxidizing environment initially reduces oxidation rates through a modification of the mechanical properties of the amorphous overlayer but does not affect the overall oxidation mechanism. A microstructural model has been developed which describes oxidation of Al-Mg alloys in terms of fracture of the original air-formed film by primary MgO nucleation and growth and modification to this film by the presence of water vapor in the oxidizing environment. Formerly at Imperial College, London.  相似文献   

11.
The effect of powder particle size on the microstructure, mechanical properties, and fracture behavior of Al-20 wt pct Si alloy powders was studied in both the gas-atomized and extruded conditions. The microstructure of the as-atomized powders consisted of fine Si particles and that of the extruded bars showed a homogeneous distribution of fine eutectic Si and primary Si particles embedded in the Al matrix. The grain size of fcc-Al varied from 150 to 600 nm and the size of the eutectic Si and primary Si was about 100 to 200 nm in the extruded bars. The room-temperature tensile strength of the alloy with a powder size <26 μm was 322 MPa, while for the coarser powder (45 to 106 μm), it was 230 MPa. The tensile strength of the extruded bar from the fine powder (<26 μm) was also higher than that of the Al-20 wt pct Si-3 wt pet Fe (powder size: 60 to 120 μm) alloys. With decreasing powder size from 45 to 106 μm to <26 μm, the specific wear of all the alloys decreased significantly at all sliding speeds due to the higher strength achieved by ultrafine-grained constituent phases. The thickness of the deformed layer of the alloy from the coarse powder (10 μm at 3.5 m/s) was larger on the worm surface in comparison to the bars from the fine powders (5 μm at 3.5 m/s), attributed to the lower strength of the bars with coarse powders.  相似文献   

12.
The unidirectional solidification of Al-4 wt pct Cu ingots in microgravity   总被引:1,自引:0,他引:1  
Three Al-4 wt pct Cu alloy ingots, 10 mm in diameter and 25-mm long, were unidirectionally solidified in microgravity during the flight of a sounding rocket, with solidification rates of about 1.6×10−4 m/s and temperature gradients of about 2600 K/m. The apparatus was comprised of three muffle furnaces, which melted the ingots prior to the launch of the rocket. Unidirectional solidification of the ingots was accomplished by chill plates attached to the furnaces, which were withdrawn from the ingots during the microgravity portion of the flight, bringing the chill plates into contact with the bases of the capsules containing the ingots. Solidification was complete in less than 4 minutes. For comparison, several ground-based ingots were solidified in unit gravity under similar conditions. Metallographic analysis of the solidified ingots showed that the macrostructures of the unit-gravity and microgravity ingots were similar, all exhibiting columnar grains. However, the microstructures were significantly different, with the microgravity ingots exhibiting primary dendrite spacings about 40 pct larger than the unit-gravity ingots and secondary dendrite arm spacings about 85 pct larger. The larger dendrite spacings for the ingots solidified in microgravity are explained by lower dendrite growth velocities. The absence of convective mixing in the microgravity ingots slightly increased temperature gradients in the liquid portion of the alloy during solidification, which resulted in decreased growth velocities. K.N. TANDON, formerly Associate Professor, Materials Engineering Laboratory, Department of Mechanical and Industrial Engineering, University of Manitoba  相似文献   

13.
The effect of powder particle size on the microstructure, mechanical properties, and fracture behavior of Al-20 wt pct Si alloy powders was studied in both the gas-atomized and extruded conditions. The microstructure of the as-atomized powders consisted of fine Si particles and that of the extruded bars showed a homogeneous distribution of fine eutectic Si and primary Si particles embedded in the Al matrix. The grain size of fcc-Al varied from 150 to 600 nm and the size of the eutectic Si and primary Si was about 100 to 200 nm in the extruded bars. The room-temperature tensile strength of the alloy with a powder size <26 μm was 322 MPa, while for the coarser powder (45 to 106 μm), it was 230 MPa. The tensile strength of the extruded bar from the fine powder (<26 μm) was also higher than that of the Al-20 wt pct Si-3 wt pct Fe (powder size: 60 to 120 μm) alloys. With decreasing powder size from 45 to 106 μm to <26 μm, the specific wear of all the alloys decreased significantly at all sliding speeds due to the higher strength achieved by ultrafine-grained constituent phases. The thickness of the deformed layer of the alloy from the coarse powder (10 μm at 3.5 m/s) was larger on the worn surface in comparison to the bars from the fine powders (5 μm at 3.5 m/s), attributed to the lower strength of the bars with coarse powders.  相似文献   

14.
Kinetics are described of dissolution of nonequilibrium second phase during solution treatment of Al-4.5 pct Cu alloy. A simple numerical analysis is presented and compared with previous analyses of Tanzilli and Heckel, Teleshov and Zolotorevsky, and Singh and Flemings. Results of experiments are compared with theories presented and it is shown that effective diffusion distance increases near the end of solution treatment when solute must diffuse over distances greater than half the secondary dendrite arm spacing.  相似文献   

15.
Grain refining of Al-4.5Cu alloy by adding an Al-30TiC master alloy   总被引:2,自引:0,他引:2  
A particulate Al-30 wt pct TiC composite was employed as a grain refiner for the Al-4.5 wt pct Cu alloy. The composite contains submicron TiC particles. The addition of the TiC grain refiner to the metal alloy in the amount of 0.1 Ti wt pct effected a remarkable reduction in the average grain size in Al-4.5 wt pct Cu alloy castings. With the content of over 0.2 Ti wt pct, the grain refiner maintained its refining effectiveness even after a 3600-second holding time at 973 K. The TiC particles in the resulting castings were free of interfacial phases. It is concluded that the TiC are the nucleating agents and that they are resistant to the “fading effect” encountered with most grain refiners.  相似文献   

16.
The microstructure and corrosion behavior of as-cast and heat-treated Al-4.5 pct Cu-2.0 pct Mn alloy specimens solidified at various cooling rates were investigated. The equilibrium phases Al6Mn and θ-Al2Cu, which are observed in the conventionally solidified alloy in the as-cast condition, were not detected in rapidly solidified (melt-spun) material. Instead, the ternary compound Al20Cu2Mn3 was present in addition to the α phase, which was present in all cases. The morphological and kinetic nature of corrosion was investigated metallographically and through potentiostatic techniques in 3.5 wt pct NaCl aqueous solution. Corrosion of the as-cast material was described by two anodic reactions: corrosion of the intermetallic phases and pitting of the α-Al solid solution. The corrosion rate increased with cooling rate from that for the furnace-cooled alloy to that for the copper mold-cast alloy and, subsequently, decreased in the rapidly solidified alloy. In the heat-treated material, corrosion could be described by two anodic reactions: corrosion of Al20Cu2Mn3 precipitate particles and pitting of the α-Al matrix. S.M. Skolianos, formerly Graduate Student, Department of Metallurgy, University of Connecticut  相似文献   

17.
18.
19.
Electron microscopy and X-ray line profile analyses have been employed to define the microstructures and substructures of pure aluminum and an overaged Al-4 wt pct Cu alloy after various thermomechanical treatments. Tensile tests were performed on the same materials, and the results have been interpreted in terms of structure. A given cold rolling reduction of the aged Al-4 wt pct Cu alloy produced a much higher dislocation density and a less cellular substructure than the same treatment produced in pure aluminum of comparable initial grain size. Annealing after cold work produced similar responses in both the pure metal and the alloy. For the aged alloy in the as-rolled, or rolled-and-annealed condition, dispersion strengthening and substructure strengthening were found to be linearly additive, and they accounted for virtually all the observed tensile yield strength. Substructure strengthening has been discussed in terms of the relation between dislocation density and the spacing and nature of the substructure boundaries.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号