首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We introduce a general notion of miniaturization of a problem that comprises the different miniaturizations of concrete problems considered so far. We develop parts of the basic theory of miniaturizations. Using the appropriate logical formalism, we show that the miniaturization of a definable problem in W[t]W[t] lies in W[t]W[t], too. In particular, the miniaturization of the dominating set problem is in W[2]W[2]. Furthermore, we investigate the relation between f(k)·no(k)f(k)·no(k) time and subexponential time algorithms for the dominating set problem and for the clique problem.  相似文献   

2.
Multiple-interval graphs are a natural generalization of interval graphs where each vertex may have more than one interval associated with it. Many applications of interval graphs also generalize to multiple-interval graphs, often allowing for more robustness in the modeling of the specific application. With this motivation in mind, a recent systematic study of optimization problems in multiple-interval graphs was initiated. In this sequel, we study multiple-interval graph problems from the perspective of parameterized complexity. The problems under consideration are kk-Independent Set, kk-Dominating Set, and kk-Clique, which are all known to be W[1]-hard for general graphs, and NP-complete for multiple-interval graphs. We prove that kk-Clique is in FPT, while kk-Independent Set and kk-Dominating Set are both W[1]-hard. We also prove that kk-Independent Dominating Set, a hybrid of the two above problems, is also W[1]-hard. Our hardness results hold even when each vertex is associated with at most two intervals, and all intervals have unit length. Furthermore, as an interesting byproduct of our hardness results, we develop a useful technique for showing W[1]-hardness via a reduction from the kk-Multicolored Clique problem, a variant of kk-Clique. We believe this technique has interest in its own right, as it should help in simplifying W[1]-hardness results which are notoriously hard to construct and technically tedious.  相似文献   

3.
We compare the fixed parameter complexity of various variants of coloring problems (including List Coloring, Precoloring Extension, Equitable Coloring, L(p,1)-Labeling and Channel Assignment) when parameterized by treewidth and by vertex cover number. In most (but not all) cases we conclude that parametrization by the vertex cover number provides a significant drop in the complexity of the problems.  相似文献   

4.
In this paper we study the parameterized complexity of probability amplification for some parameterized probabilistic classes. We prove that it is very unlikely that W[P] has the probability amplification property.  相似文献   

5.
We show that for any constant t≥2, k-Independent Set and k-Dominating Set in t-track interval graphs are W[1]-hard. This settles an open question recently raised by Fellows, Hermelin, Rosamond, and Vialette. We also give an FPT algorithm for k-Clique in t-interval graphs, parameterized by both k and t, with running time , where n is the number of vertices in the graph. This slightly improves the previous FPT algorithm by Fellows, Hermelin, Rosamond, and Vialette. Finally, we use the W[1]-hardness of k-Independent Set in t-track interval graphs to obtain the first parameterized intractability result for a recent bioinformatics problem called Maximal Strip Recovery (MSR). We show that MSR-d is W[1]-hard for any constant d≥4 when the parameter is either the total length of the strips, or the total number of adjacencies in the strips, or the number of strips in the solution.  相似文献   

6.
Even faster parameterized cluster deletion and cluster editing   总被引:1,自引:0,他引:1  
Cluster Deletion and Cluster Editing ask to transform a graph by at most k edge deletions or edge edits, respectively, into a cluster graph, i.e., disjoint union of cliques. Equivalently, a cluster graph has no conflict triples, i.e., two incident edges without a transitive edge. We solve the two problems in time O?(k1.415) and O?(k1.76), respectively. These results round off our earlier work by considerably improved time bounds. For Cluster Deletion we use a technique that cuts away small connected components that do no longer contribute to the exponential part of the time complexity. As this idea is simple and versatile, it may lead to improvements for several other parameterized graph problems. The improvement for Cluster Editing is achieved by using the full power of an earlier structure theorem for graphs where no edge is in three conflict triples.  相似文献   

7.
We propose a general proof technique based on the Turing machine halting problem that allows us to establish membership results for the classes W[1], W[2], and W[P]. Using this technique, we prove that Perfect Code belongs to W[1], Steiner Tree belongs to W[2], and α-Balanced Separator, Maximal Irredundant Set, and Bounded DFA Intersection belong to W[P].  相似文献   

8.
We show that the fixed alphabet shortest common supersequence (SCS) and the fixed alphabet longest common subsequence (LCS) problems parameterized in the number of strings are W[1]-hard. Unless W[1]=FPT, this rules out the existence of algorithms with time complexity of O(f(k)nα) for those problems. Here n is the size of the problem instance, α is constant, k is the number of strings and f is any function of k. The fixed alphabet version of the LCS problem is of particular interest considering the importance of sequence comparison (e.g. multiple sequence alignment) in the fixed length alphabet world of DNA and protein sequences.  相似文献   

9.
Covering problems are fundamental classical problems in optimization, computer science and complexity theory. Typically an input to these problems is a family of sets over a finite universe and the goal is to cover the elements of the universe with as few sets of the family as possible. The variations of covering problems include well-known problems like Set Cover, Vertex Cover, Dominating Set and Facility Location to name a few. Recently there has been a lot of study on partial covering problems, a natural generalization of covering problems. Here, the goal is not to cover all the elements but to cover the specified number of elements with the minimum number of sets. In this paper we study partial covering problems in graphs in the realm of parameterized complexity. Classical (non-partial) version of all these problems has been intensively studied in planar graphs and in graphs excluding a fixed graph H as a minor. However, the techniques developed for parameterized version of non-partial covering problems cannot be applied directly to their partial counterparts. The approach we use, to show that various partial covering problems are fixed parameter tractable on planar graphs, graphs of bounded local treewidth and graph excluding some graph as a minor, is quite different from previously known techniques. The main idea behind our approach is the concept of implicit branching. We find implicit branching technique to be interesting on its own and believe that it can be used for some other problems.  相似文献   

10.
The survey is a comprehensive overview of the developing area of parameterized algorithms for graph modification problems. It describes state of the art in kernelization, subexponential algorithms, and parameterized complexity of graph modification. The main focus is on edge modification problems, where the task is to change some adjacencies in a graph to satisfy some required properties. To facilitate further research, we list many open problems in the area.  相似文献   

11.
We present a generic scheme for approximating NP-hard problems on graphs of treewidth k=ω(logn). When a tree-decomposition of width ? is given, the scheme typically yields an ?/logn-approximation factor; otherwise, an extra logk factor is incurred. Our method applies to several basic subgraph and partitioning problems, including the maximum independent set problem.  相似文献   

12.
We develop new techniques for deriving strong computational lower bounds for a class of well-known NP-hard problems. This class includes weighted satisfiability, dominating set, hitting set, set cover, clique, and independent set. For example, although a trivial enumeration can easily test in time O(nk) if a given graph of n vertices has a clique of size k, we prove that unless an unlikely collapse occurs in parameterized complexity theory, the problem is not solvable in time f(k)no(k) for any function f, even if we restrict the parameter values to be bounded by an arbitrarily small function of n. Under the same assumption, we prove that even if we restrict the parameter values k to be of the order Θ(μ(n)) for any reasonable function μ, no algorithm of running time no(k) can test if a graph of n vertices has a clique of size k. Similar strong lower bounds on the computational complexity are also derived for other NP-hard problems in the above class. Our techniques can be further extended to derive computational lower bounds on polynomial time approximation schemes for NP-hard optimization problems. For example, we prove that the NP-hard distinguishing substring selection problem, for which a polynomial time approximation scheme has been recently developed, has no polynomial time approximation schemes of running time f(1/?)no(1/?) for any function f unless an unlikely collapse occurs in parameterized complexity theory.  相似文献   

13.
The H-Minor containment problem asks whether a graph G contains some fixed graph H as a minor, that is, whether H can be obtained by some subgraph of G after contracting edges. The derivation of a polynomial-time algorithm for H-Minor containment is one of the most important and technical parts of the Graph Minor Theory of Robertson and Seymour and it is a cornerstone for most of the algorithmic applications of this theory. H-Minor containment for graphs of bounded branchwidth is a basic ingredient of this algorithm. The currently fastest solution to this problem, based on the ideas introduced by Robertson and Seymour, was given by Hicks in [I.V. Hicks, Branch decompositions and minor containment, Networks 43 (1) (2004) 1-9], providing an algorithm that in time O(3k2⋅(h+k−1)!m) decides if a graph G with m edges and branchwidth k, contains a fixed graph H on h vertices as a minor. In this work we improve the dependence on k of Hicks’ result by showing that checking if H is a minor of G can be done in time O(2(2k+1)⋅logkh2k⋅22h2m). We set up an approach based on a combinatorial object called rooted packing, which captures the properties of the subgraphs of H that we seek in our dynamic programming algorithm. This formulation with rooted packings allows us to speed up the algorithm when G is embedded in a fixed surface, obtaining the first algorithm for minor containment testing with single-exponential dependence on branchwidth. Namely, it runs in time 2O(k)h2k⋅2O(h)n, with n=∣V(G)∣. Finally, we show that slight modifications of our algorithm permit to solve some related problems within the same time bounds, like induced minor or contraction containment.  相似文献   

14.
Motivated by the research in reconfigurable memory array structures, this paper studies the complexity and algorithms for the constrained minimum vertex cover problem on bipartite graphs (min-cvcb) defined as follows: given a bipartite graph G=(V,E) with vertex bipartition V=UL and two integers ku and kl, decide whether there is a minimum vertex cover in G with at most ku vertices in U and at most kl vertices in L. It is proved in this paper that the min-cvcb problem is NP-complete. This answers a question posed by Hasan and Liu. A parameterized algorithm is developed for the problem, in which classical results in matching theory and recently developed techniques in parameterized computation theory are nicely combined and extended. The algorithm runs in time O(1.26ku+kl+(ku+kl)|G|) and significantly improves previous algorithms for the problem.  相似文献   

15.
Let be a fixed collection of digraphs. Given a digraph H, a -packing of H is a collection of vertex disjoint subgraphs of H, each isomorphic to a member of . For undirected graphs, Loebl and Poljak have completely characterized the complexity of deciding the existence of a perfect -packing, in the case that consists of two graphs one of which is a single edge on two vertices. We characterize -packing where consists of two digraphs one of which is a single arc on two vertices.  相似文献   

16.
Graph separation is a well-known tool to make (hard) graph problems accessible to a divide-and-conquer approach. We show how to use graph separator theorems in combination with (linear) problem kernels in order to develop fixed parameter algorithms for many well-known NP-hard (planar) graph problems. We coin the key notion of glueable select&verify graph problems and derive from that a prospective way to easily check whether a planar graph problem will allow for a fixed parameter algorithm of running time for constant c. One of the main contributions of the paper is to exactly compute the base c of the exponential term and its dependence on the various parameters specified by the employed separator theorem and the underlying graph problem. We discuss several strategies to improve on the involved constant c.  相似文献   

17.
We study the parameterized complexity of several minimum label graph problems, in which we are given an undirected graph whose edges are labeled, and a property Π, and we are asked to find a subset of edges satisfying property Π with respect to G that uses the minimum number of labels. These problems have a lot of applications in networking. We show that all the problems under consideration are W[2]-hard when parameterized by the number of used labels, and that they remain W[2]-hard even on graphs whose pathwidth is bounded above by a small constant. On the positive side, we prove that most of these problems are FPT when parameterized by the solution size, that is, the size of the sought edge set. For example, we show that computing a maximum matching or an edge dominating set that uses the minimum number of labels, is FPT when parameterized by the solution size. Proving that some of these problems are FPT requires interesting algorithmic methods that we develop in this paper.  相似文献   

18.
19.
20.
In 2011, Cai an Yang initiated the systematic parameterized complexity study of the following set of problems around Eulerian graphs: for a given graph G and integer k, the task is to decide if G contains a (connected) subgraph with k vertices (edges) with all vertices of even (odd) degrees. They succeed to establish the parameterized complexity of all cases except two, when we ask about:
a connected k-edge subgraph with all vertices of odd degrees, the problem known as k-Edge Connected Odd Subgraph; and  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号