首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 178 毫秒
1.
Liu X  Jiang H  Lei J  Ju H 《Analytical chemistry》2007,79(21):8055-8060
This work reported for the first time the anodic electrochemiluminescence (ECL) of CdTe quantum dots (QDs) in aqueous system and its analytical application based on the ECL energy transfer to analytes. The CdTe QDs were modified with mercaptopropionic acid to obtain water-soluble QDs and stable and intensive anodic ECL emission with a peak value at +1.17 V (vs Ag/AgCl) in pH 9.3 PBS at an indium tin oxide (ITO) electrode. The ECL emission was demonstrated to involve the participation of superoxide ion produced at the ITO surface, which could inject an electron into the 1Se quantum-confined orbital of CdTe to form QDs anions. The collision between these anions and the oxidation products of QDs led to the formation of the excited state of QDs and ECL emission. The ECL energy transfer from the excited CdTe QDs to quencher produced a novel methodology for detection of catechol derivatives. Using dopamine and L-adrenalin as model analytes, this ECL method showed wide linear ranges from 50 nM to 5 microM and 80 nM to 30 microM for these species. Both ascorbic acid and uric acid, which are common interferences, did not interfere with the detection of catechol derivatives in practical biological samples.  相似文献   

2.
实验设计制备了一种由12层硫化锌包覆硒化镉的核壳型量子点(CdSe/12ZnS QDs)和纳米金颗粒(Au NPs)自组装形成的CdSe/12ZnS QDs/Au NPs复合结构, 并将其应用于神经性毒剂模拟剂氰基磷酸二乙酯(Diethyl Cyanophosphonate, DCNP)的高效检测。QDs由于与Au NPs存在荧光共振能量转移作用(Fluorescence Resonance Energy Transfer, FRET)而发生荧光猝灭, 乙酰胆碱酯酶(AChE)水解氯化硫代乙酰胆碱(ATC)生成的硫胆碱能够将量子点取代而使量子点荧光恢复。当QDs与Au NPs的摩尔浓度比为20 : 1时, QDs荧光猝灭效果最佳, AChE浓度为1.0×10 -3 U/L时, QDs荧光恢复效果最好。DCNP的存在会抑制AChE的活性, 减少硫胆碱的生成并降低QDs的荧光恢复效率, 通过对QDs荧光恢复效率测定能够检测DCNP。在最优条件下对DCNP的检测结果表明, 量子点的荧光恢复效率与DCNP浓度的对数在5.0×10 -9~5.0×10 -4mol/L的范围内存在良好的线性关系, 检出限达5.0×10 -9mol/L。  相似文献   

3.
基于量子点的分子灯塔探针的制备及其在DNA探针中的应用   总被引:1,自引:0,他引:1  
根据荧光共振能量转移理论合成出一种新颖的分子灯塔探针.由于CdTe量子点(QD s)的荧光发射光谱与DABCYL的紫外-可见吸收光谱有很好的重叠性,所以此种探针采用CdTe量子点作为能量给体,DABCYL作为能量受体.通过水相法合成出直径为2.5 nm的CdTe量子点,并且在偶联剂1-乙基-3-(3-二甲基氨丙基)碳二亚氨盐酸盐(EDC)作用下,与5-′NH2-DNA-DABCYL连接得到了分子灯塔探针.实验发现探针的荧光强度相比CdTe-DNA有明显的下降,最大能量转移效率为68.3%,表明CdTe QD s和DABCYL之间发生了荧光共振能量转移.结果表明,此种探针体系对于互补DNA及其变种有着很好的特异性,且其检测极限为5.170×10^-9mol/L.  相似文献   

4.
《Materials Letters》2006,60(21-22):2565-2568
In this paper, novel CdSe quantum dots (QDs) modified with poly (d, l-lactide) (PLA) nanoparticles by nanoprecipitation method was reported. CdSe QDs modified with PLA nanoparticles were characterized by Photon correlation spectroscope (PCS), transmission electron microscope (TEM), flluorescence spectrophotometer and fluorescence microscope. The modified CdSe QDs were spherical and relatively uniform. The modified CdSe QDs were water soluble and their strong yellow fluorescence emission was observed both in vitro and in vivo. The fluorescence of the modified CdSe QDs was stable in aqueous solution for more than 30 d. These modified CdSe QDs are expected to have much potential for biological labeling and diagnostics based on above properties.  相似文献   

5.
Commercial white light‐emitting diodes (LEDs) have the undesirable characteristics of blue‐rich emission and low color rendering index (CRI), while the constituent quantum dots (QDs) suffer from aggregation‐induced fluorescence quenching and poor stability. Herein, a strategy is developed to assemble tricolor QDs into a polysiloxane matrix using a polymer‐mediated hybrid approach whereby the hybrid composite exhibits a significant enhancement of aggregation‐dispersed emission, outstanding photostability, high thermal stability, and outstanding fluorescence recovery. Using the as‐prepared hybrid fluorescent materials, the fabricated LEDs exhibit solar spectrum‐simulated emission with adjustable Commission Internationale de L'Eclairage coordinates, correlated color temperature, and a recorded CRI of 97. Furthermore, they present no ultraviolet emission and weak blue emission, thus indicating an ideal healthy and high‐CRI white LED lighting source.  相似文献   

6.
Huang Y  Zhao S  Shi M  Chen J  Chen ZF  Liang H 《Analytical chemistry》2011,83(23):8913-8918
DNA cleavage by endonucleases plays an important role in many biological events such as DNA replication, recombination, and repair and is used as a powerful tool in medicinal chemistry. However, conventional methods for assaying endonuclease activity and inhibition by gel electrophoresis and chromatography techniques are time-consuming, laborious, not sensitive, or costly. Herein, we combine the high specificity of DNA cleavage reactions with the benefits of quantum dots (QDs) and ultrahigh quenching abilities of inter- and intramolecular quenchers to develop highly sensitive and specific nanoprobes for multiplexed detection of endonucleases. The nanoprobe was prepared by conjugating two sets of DNA substrates carrying quenchers onto the surface of aminated QDs through direct assembly and DNA hybridization. With this new design, the background fluorescence was significantly suppressed by introducing inter- and intramolecular quenchers. When these nanoprobes are exposed to the targeted endonucleases, specific DNA cleavages occur and pieces of DNA fragments are released from the QD surface along with the quenchers, resulting in fluorescence recovery. The endonuclease activity was quantified by monitoring the change in the fluorescence intensity. The detection was accomplished with a single excitation light. Multiplexed detection was demonstrated by simultaneously assaying EcoRI and BamHI (as model analytes) using two different emissions of QDs. The limits of detection were 4.0 × 10(-4) U/mL for EcoRI and 8.0 × 10(-4) U/mL for BamHI, which were at least 100 times more sensitive than traditional gel electrophoresis and chromatography assays. Moreover, the potential application of the proposed method for screening endonuclease inhibitors has also been demonstrated. The assay protocol presented here proved to be simple, sensitive, effective, and easy to carry out.  相似文献   

7.
Xu X  Liu X  Nie Z  Pan Y  Guo M  Yao S 《Analytical chemistry》2011,83(1):52-59
Herein, we present a novel label-free fluorescent assay for monitoring the activity and inhibition of protein kinases based on the aggregation behavior of unmodified CdTe quantum dots (QDs). In this assay, cationic substrate peptides induce the selective aggregation of unmodified QDs with anionic surface charge, whereas phosphorylated peptides do not. Phosphorylation by kinase alters the net charge of peptides and subsequently inhibits the aggregation of unmodified QDs, causing an enhanced fluorescence with a 45 nm blue-shift in emission and a yellow-to-green emission color change. Hence the fluorescence response allows this QD-based method to easily probe kinase activity by a spectrometer or even by the naked eye. The feasibility of the method has been demonstrated by sensitive measurement of the activity of cAMP-dependent protein kinase (PKA) with a low detection limit (0.47 mU μL(-1)). On the basis of the fluorescence response of QDs on the concentration of PKA inhibitor H-89, the IC(50) value, the half maximal inhibitory concentration, was estimated, which was in agreement with the literature value. Moreover, the system can be applicable to detect the Forskolin/3-isobutyl-1-methylxantine (IBMX)-stimulated activation of PKA in cell lysate. Unlike the existing QD-based enzyme activity assays in which the modification process of QDs is essential, this method relies on unmodified QDs without the requirement of peptide labeling and QDs' modification, presenting a promising candidate for cost-effective kinase activity and inhibitor screening assays.  相似文献   

8.
Han E  Ding L  Ju H 《Analytical chemistry》2011,83(18):7006-7012
A double signal amplification strategy was designed for highly sensitive and selective in situ monitoring of carbohydrate on living cells. The double signal amplification included the multiplex sandwich binding of functionalized quantum dots (QDs) to both glycan groups on the cell surface and glyconanoparticles and a cadmium cation sensitized fluorescence emission of Rhod-5N. Using the sialic acid-phenylboronic acid recognition system as a model, the 3-aminophenylboronic acid functionalized QDs (APBA-QDs) were synthesized by covalently binding APBA to mercaptopropionic acid capped CdS QDs, and the glyconanoparticles, polysialic acid stabilized gold nanoparticles (PSA-AuNPs), were prepared by a one-pot procedure. The APBA-QDs first recognized the sialic acid (SA) groups on BGC-823 human gastric carcinoma (BGC) cells and then the PSA on AuNPs, which were further used to bind more APBA-QDs on the cell surface for signal amplification. After the bound QDs were dissolved to release the Cd(2+), a Cd(2+)-sensitized fluorescence method was developed for the detection of BGC cells in a linear range from 5.0 × 10(2) to 1.0 × 10(7) cells mL(-1) with a limit of detection down to 210 cells mL(-1) (8 cells in 40 μL of solution) and the dynamic monitoring of SA expression variation on the cell surface. The monitoring result was identical with that from flow cytometric analysis. This approach showed high specificity and acceptable reproducibility. This strategy provided a promising platform for highly sensitive cytosensing and cytobiologic study.  相似文献   

9.
Lu Z  Zhu Z  Zheng X  Qiao Y  Guo J  Li CM 《Nanotechnology》2011,22(15):155604
With advances of quantum dots (QDs) in bioimaging applications, various materials have been used to coat QDs to reduce their nanotoxicity; however, the coating could introduce new toxic sources and quench the fluorescence in bioimaging applications. In this work, ZrO?, an excellent ceramic material with low extinction coefficient and good biocompatibility, is utilized to coat CdTe QDs for the first time. Experimental results show that ZrO?-QD nanocomposites with the size of ~30 nm possess enhanced fluorescence emission, lower nanotoxicity and gradually increased fluorescence under 350 nm light illumination. After functionalization with folic acid, they were applied to label cultured HeLa cells effectively. Therefore, the ZrO?-QD nanocomposites could be promising biocompatible nanomaterials with strong fluorescence emission to replace or complement QDs in biomedical applications.  相似文献   

10.
Pham TA  Choi BC  Jeong YT 《Nanotechnology》2010,21(46):465603
A facile approach for the preparation of a novel hybrid material containing graphene and an inorganic semiconducting material, cadmium sulfide quantum dots (CdS QDs), is demonstrated for the first time. First, amino-functionalized CdS QDs were prepared by modifications of the kinetic trapping method. Then, pristine graphite was oxidized and exfoliated to obtain graphene oxide nanosheets (GONS), which were then acylated with thionyl chloride to introduce acyl chloride groups on their surface. Subsequently, immobilization of the CdS QDs on the GONS surface was achieved through an amidation reaction between the amino groups located on the CdS QDs surface and the acyl chloride groups bound to the GONS surface. Fourier transform infrared spectroscopy (FT-IR), (1)H nuclear magnetic resonance ((1)H-NMR), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and energy dispersive x-ray (EDX) spectroscopy were employed to investigate the changes in the surface functionalities, while high resolution transmission electron microscopy (HR-TEM) and field emission scanning electronic microscopy (FE-SEM) were used to study the morphologies and distribution of the CdS QDs on the GONS surface. Thermogravimetric analysis (TGA) was employed to characterize the weight loss of the samples on heating. Photoluminescence (PL) measurements were used to study the optical properties of the prepared CdS QDs and the CdS-graphene hybrid material.  相似文献   

11.
Gao D  Wang Z  Liu B  Ni L  Wu M  Zhang Z 《Analytical chemistry》2008,80(22):8545-8553
This paper reports a resonance energy transfer-amplifying fluorescence quenching at the surface of silica nanoparticles for the ultrasensitive detection of 2,4,6-trinitrotoluene (TNT) in solution and vapor environments. Fluorescence dye and organic amine were covalently modified onto the surface of silica nanoparticles to form a hybrid monolayer of dye fluorophores and amine ligands. The fluorescent silica particles can specifically bind TNT species by the charge-transfer complexing interaction between electron-rich amine ligands and electron-deficient aromatic rings. The resultant TNT-amine complexes bound at the silica surface can strongly suppress the fluorescence emission of the chosen dye by the fluorescence resonance energy transfer (FRET) from dye donor to the irradiative TNT-amine acceptor through intermolecular polar-polar interactions at spatial proximity. The quenching efficiency of the hybrid nanoparticles with TNT is greatly amplified by at least 10-fold that of the corresponding pure dye. The nanoparticle-assembled arrays on silicon wafer can sensitively detect down to approximately 1 nM TNT with the use of only 10 microL of solution (approximately 2 pg TNT) and several ppb of TNT vapor in air. The simple FRET-based nanoparticle sensors reported here exhibit a high and stable fluorescence brightness, strong analyte affinity, and good assembly flexibility and can thus find many applications in the detection of ultratrace analytes.  相似文献   

12.
以巯基丙酸为稳定剂, 在水相中合成了表面带负电荷、具有良好的分散性、平均粒径为5nm的CdTe量子点. 通过CdTe量子点与阳离子聚电解质聚二烯丙基二甲基氯化铵(PDDA)和阴离子聚电解质聚苯乙烯磺酸钠(PSS)之间的静电相互作用, 在石英基片表面通过层层静电自组装方法制备了多层CdTe量子点纳米薄膜. 以荧光分光光度计、UV-Vis、XPS、AFM等测试手段对所得的CdTe量子点纳米薄膜进行了表征. 研究结果表明, CdTe量子点自组装多层薄膜的UV-Vis吸光度与组装层数基本呈线性关系, 薄膜成膜质量良好. 自组装薄膜基本上规整并均匀地覆盖在石英基底表面, 但薄膜中存在部分CdTe量子点聚集现象. 通过在相邻的两层CdTe量子点之间引入基本结构单元为PDDA/PSS/PDDA的聚电解质复合层, 可有效提高CdTe量子点纳米薄膜的成膜质量. 所得的CdTe量子点纳米薄膜具有良好的荧光光致发光性.  相似文献   

13.
In this paper we report a novel synthesis method of blue fluorescence CdS quantum dots stabilized by L-cysteine in aqueous phase. When pH value of the core/shell CdTe/CdS colloid solution changed from 11.6 to 1.5, blue fluorescence CdS QDs was obtained. The fluorescence emission wavelength yielded a hypsochromic shift from 540 nm to 438 nm corresponding to the absorption peak position gave a hypsochromic shift from 518 nm to 352 nm. The CdS QDs were characterized by XPS and TEM. And the photostability of CdS QDs solution irradiated with UV lamp under open air condition at room temperature was very stable.  相似文献   

14.
Although Ag2S quantum dots (QDs) have attracted extensive attention in the fields of diagnosis and therapy, it is still a challenge to prepare Ag2S QDs with well-controlled size distribution. Herein, size-tunable Ag2S QDs with glutathione (GSH) as ligands were prepared via a facile aqueous precipitation method. The QDs are precisely prepared through carefully controlled growth of Ag2S QDs by varying the heating time. Morphology and structure characterization verify that Ag2S QDs with 2.0–5.8 nm in diameter are coordinated with GSH through thiol group. The as-prepared Ag2S QDs exhibit broad absorption spectra and narrow fluorescence emission spectra in the near-infrared region. Meanwhile, the QDs perform excellent and stable photothermal effect with a photothermal conversion efficiency up to 58.6%. More importantly, it is found that the size of Ag2S QDs has a significant influence on the fluorescence intensity and photothermal effect. The cell viability evaluation in vitro demonstrates that Ag2S QDs have low cytotoxicity to 293 T cells and Hela cells by methyl thiazolyl tetrazolium test. This paper proposes a convenient route to prepare unique Ag2S QDs, which are capable to act as ideal theranostics probes for photothermal therapy and simultaneously monitoring the therapeutic effect for effective cancer treatment.  相似文献   

15.
Zhu D  Chen Y  Jiang L  Geng J  Zhang J  Zhu JJ 《Analytical chemistry》2011,83(23):9076-9081
Quantum dots (QDs) are generally used for the conventional fluorescence detection. However, it is difficult for the QDs to be applied in time-resolved fluorometry due to their short-lived emission. In this paper, high-quality Mn-doped ZnSe QDs with long-lived emission were prepared using a green and rapid microwave-assisted synthetic approach in aqueous solution. Fluorescence lifetime of the Mn-doped ZnSe QDs was extended as long as 400 μs, which was 10,000 times higher than that of conventional QDs such as CdS, CdSe, and CdTe. The QDs exhibited an excellent photostability over 35 h under continuous irradiation at 260 nm. Capped with mercaptopropionic acid (MPA), the Mn-doped ZnSe QDs were used for the time-resolved fluorescence detection of 5-fluorouracil (5-FU) with the detection limit of 128 nM. The relative standard deviation for seven independent measurements of 1.5 μM 5-FU was 3.8%, and the recovery ranged from 93% to 106%. The results revealed that the Mn-doped ZnSe QDs could be a good candidate as a luminescence probe for highly sensitive time-resolved fluorometry.  相似文献   

16.
Wang GL  Dong YM  Li ZJ 《Nanotechnology》2011,22(8):085503
Metal ion (Ag(+), Cd(2+), Zn(2+)) modified CdS quantum dots (QDs) were synthesized and used for Cu(2+) sensing. Modification by these metal ions could enhance the PL intensity of CdS QDs with the extent of the PL enhancement being related to the concentration of the metal ions. Different metal ion (Ag(+), Cd(2+), Zn(2+)) modified CdS QDs also showed different analytical characteristics for Cu(2+) sensing. In particular, Ag( + ) modified CdS QDs showed greatly enhanced sensitivity for Cu(2+) determination than did the unmodified CdS QDs. A limit of detection (LOD) of 2.0 × 10(-10) M was obtained for Ag(+) modified CdS QDs, which is the lowest LOD obtained using QDs as fluorescence probes for Cu(2+) sensing. This study demonstrates the important role of surface state of QDs in fluorescence sensing.  相似文献   

17.
Xia Y  Song L  Zhu C 《Analytical chemistry》2011,83(4):1401-1407
In this study, we design a FRET system consisting of gold nanorod (AuNR) and quantum dots (QDs) for turn-on fluorescent sensing of 2,4,6-trinitrotoluene (TNT) in near-infrared region. The amine-terminated AuNR and carboxyl-terminated QDs first form a compact hybrid assembly through amine-carboxyl attractive interaction, which leads to a high-efficiency (>92%) FRET from QDs to AuNRs and an almost complete emission quenching. Next, added TNT molecules break the preformed assembly because they can replace the QDs around AuNRs, based on the specific reaction of forming Meisenheimer complexes between TNT and primary amines. Thus, the FRET is switched off, and a more than 10 times fluorescent enhancement is obtained. The fluorescence turn-on is immediate, and the limit of detection for TNT is as low as 0.1 nM. Importantly, TNT can be well distinguished from its analogues due to their electron deficiency difference. The developed method is successfully applied to TNT sensing in real environmental samples.  相似文献   

18.
In this study, a novel perovskite quantum dot (QD) spray‐synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic‐shaped perovskite QDs with a homogeneous size of 14 nm is demonstrated, which shows an unprecedented stable absolute photoluminescence quantum yield ≈100% in the solution and even in the solid‐state neat film. The highly emissive thin films are integrated with light emission devices (LEDs) and organic light emission displays (OLEDs). The color conversion type QD‐LED (ccQD‐LED) hybrid devices exhibit an extremely saturated green emission, excellent external quantum efficiency of 28.1%, power efficiency of 121 lm W?1, and extraordinary forward‐direction luminescence of 8 500 000 cd m?2. The conceptual ccQD‐OLED hybrid display also successfully demonstrates high‐definition still images and moving pictures with a 119% National Television System Committee 1931 color gamut and 123% Digital Cinema Initiatives‐P3 color gamut. These very‐stable, ultra‐bright perovskite QDs have the properties necessary for a variety of useful applications in optoelectronics.  相似文献   

19.
采用微波辐射加热的方法,以亚碲酸钠(Na2TeO3)作碲源,以谷胱甘肽(GSH)作稳定剂,在水相中合成出高质量的CdTe量子点。所合成量子点的发射波长从515~630nm可调,荧光量子产率(PLQYs)最高达95%。利用X射线粉末衍射(XRD)、高分辨透射电镜(HRTEM)、紫外-可见吸收光谱(UV-Vis)和荧光发射光谱(PL)等技术表征产物的物相结构和光学性质。用双光子激发荧光法研究CdTe量子点的双光子吸收性质。用双光子激发荧光成像技术,以发红光的CdTe量子点作为双光子荧光探针成功标记了人肺腺癌细胞(A549)。  相似文献   

20.
Koktysh D  Bright V  Pham W 《Nanotechnology》2011,22(27):275606
A fluorescent magnetic hybrid imaging nanoprobe (HINP) was fabricated by the conjugation of superparamagnetic Fe3O4 nanoparticles and visible light emitting (~600 nm) fluorescent CdTe/CdS quantum dots (QDs). The assembly strategy used the covalent linking of the oxidized dextran shell of magnetic particles to the glutathione ligands of QDs. The synthesized HINP formed stable water-soluble colloidal dispersions. The structure and properties of the particles were characterized by transmission electron and atomic force microscopy, energy dispersive x-ray analysis and inductively coupled plasma optical emission spectroscopy, dynamic light scattering analysis, optical absorption and photoluminescence spectroscopy, and fluorescent imaging. The luminescence imaging region of the nanoprobe was extended to the near-infrared (NIR) (~800 nm) by conjugation of the superparamagnetic nanoparticles with synthesized CdHgTe/CdS QDs. Cadmium, mercury based QDs in HINP can be easily replaced by novel water-soluble glutathione stabilized AgInS2/ZnS QDs to present a new class of cadmium-free multimodal imaging agents. The observed NIR photoluminescence of fluorescent magnetic nanocomposites supports their use for bioimaging. The developed HINP provides dual-imaging channels for simultaneous optical and magnetic resonance imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号