首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sixteen Holstein cows in midlactation were randomly assigned to treatments in a replicated 4 x 4 Latin square. Two levels of CP (16.1 vs. 18.8%) with or without supplemental methionine (0.07 g/100 g of DM) were tested in a 2 x 2 factorial arrangement of treatments. Dry matter intake, milk production, milk composition, and N excretion were determined. No interactions between CP level and methionine supplementation were observed. Milk production and dry matter intake were not different among treatments. Milk protein concentration increased from 3.17 to 3.26% with the addition of methionine and decreased from 3.24 to 3.17% with increased CP. No differences were observed among treatments in milk protein yield. Milk fat concentration was low across all diets, but was increased from 2.33% with 16.1% CP diets to 2.68% with 18.8% CP diets. No significant treatment effects were observed for SNF, lactose concentration in milk, or casein N as a fraction of skim milk N. Increased dietary CP increased milk urea N by 3.9 mg/dl. Methionine supplementation did not affect N excretion in urine or feces. The higher protein diets increased estimated urine volume by 2.9 L/d and increased N concentration by 1.7 percentage units in both urine and feces. Feeding higher protein increased milk urea and urine N excretion as expressed as a percentage of total N excreted (44 vs. 38% for 18.8 and 16.1% CP, respectively). Overall, feeding 16.1% CP produced milk and milk protein yields similar to feeding 18.8% CP, but reduced the N losses in urine and milk urea.  相似文献   

2.
Thirty-eight midlactating Holstein cows averaging 597 kg of body weight (SD = 59) were used to determine the effects of dietary flaxseed on protein requirement and N excretion in urine and feces. Milk yield and composition, intake, and digestibility were also determined. Cows were allotted from wk 20 to 30 of lactation to 1 of 4 TMR containing 1) no flaxseed (control) and 16% protein (MPC), 2) whole flaxseed and 16% protein (MPF), 3) no flaxseed (control) and 18% protein (HPC), and 4) whole flaxseed and 18% protein (HPF). Cows fed high protein diets had greater feed intake than those fed medium protein diets (20.2 vs. 18.4 kg/d), and cows fed no flaxseed had greater dry matter intake than those fed flaxseed (20.1 vs. 18.5 kg/d). Milk yield was lower for cows fed MPF (20.3 kg/d) than for those fed HPC (24.4 kg/d), HPF (24.9 kg/d), or MPC (24.0 kg/d). Milk protein and lactose concentrations were similar for cows fed MPC and HPC, but flaxseed decreased milk protein concentration in cows fed MPF or HPF compared with cows fed the control diets. Milk fat concentration was similar in cows fed diets with or without flaxseed, but it was decreased by higher protein concentration. Digestibility was generally reduced when diets contained flaxseed and lower protein concentration. Dietary protein had no effect while dietary flaxseed increased fecal N excretion. Retention of N was lower in cows fed flaxseed compared with cows fed the control diets. Feeding flaxseed decreased milk concentrations of short- and medium-chain fatty acids and increased those of long-chain fatty acids. Flaxseed had no effect on the dietary requirement of N by midlactating dairy cows.  相似文献   

3.
The effect of dietary P content on P partitioning and excretion during early lactation was evaluated in 13 cows fed diets containing 0.34 (no supplementary P), 0.51, or 0.67% P. All cows were fed a common pre-partum total mixed ration (TMR) (0.28% P), followed by common TMR (0.51% P) for 7 d post-partum. On day 7, cows were randomly assigned to one of the three dietary P treatments. All treatment diets contained 16.6% CP, 15.2% ADF, 26.3% NDF, and 0.74% Ca. Total collections of milk, urine, and feces were conducted during weeks 3, 5, 7, 9, and 11 of lactation. Average body weight (591 kg), milk yield (47.9 kg/d), and DMI (25.2 kg/d) throughout the 10-wk trial were not affected by dietary P content. With increasing dietary P, however, linear increases in P intake (84.7, 135.2, and 161.5 g/d), fecal P (42.3, 87.5, and 108.6 g/d), urinary P (0.32, 1.28, and 3.90 g/d), and total P excretion (42.6, 88.8, and 112.5 g/d) were observed. Apparent P digestibility (49.0, 34.4, and 32.8% of P intake) decreased quadratically with increasing dietary P. Phosphorus balance was highly variable, but cows fed the 0.34% P diet were in negative P balance longer than were cows fed diets containing 0.51 or 0.67% P. With increasing dietary P, serum concentrations of inorganic P increased linearly, but serum Ca and Mg concentrations decreased. Increasing dietary P increased fecal and urinary P excretion in early lactation cows. Increased duration of negative P balance and changes in blood mineral concentrations suggest that cows fed low P diets mobilized more P from body reserves than cows on medium- and high-P diets.  相似文献   

4.
Effects of forage source, concentration of metabolizable protein (MP), and type of carbohydrate on manure excretion by dairy cows and production of ammonia from that manure were evaluated using a central composite experimental design. All diets (dry basis) contained 50% forage that ranged from 25:75 to 75:25 alfalfa silage:corn silage. Diets contained 10.7% rumendegradable protein with variable concentrations of undegradable protein so that dietary MP ranged from 8.8 to 12%. Starch concentration ranged from 22 to 30% with a concomitant decrease in neutral detergent fiber. A total of 15 diets were fed to 36 Holstein cows grouped in 6 blocks. Each block was a replicated 3 × 3 Latin square resulting in 108 observations. Manure output (urine and feces) was measured using total collection, and fresh feces and urine were combined into slurries and incubated for 48 h to measure NH3-N production. Feces, urine, and manure output averaged 50.5, 29.5, and 80.1 kg/d, respectively. Manure output increased with increasing dry matter intake (∼3.5 kg of manure/kg of dry matter intake), increased concentrations of alfalfa (mostly via changes in urine output), and decreased concentrations of starch (mostly via changes in fecal output). The amount of NH3-N produced per gram of manure decreased with increasing alfalfa because excreted N shifted from urine to feces. Increasing MP increased NH3-N produced per gram of manure mainly because of increased urinary N, but increased fecal N also contributed to the manure NH3. Manure NH3-N production per cow (accounts for effects on manure production and NH3-N produced per unit of manure) was least and milk protein yields were maximal for diets with high alfalfa (75% of the forage), moderate MP (11% of diet dry matter), and high starch (30% of diet dry matter).  相似文献   

5.
The effects of dietary sulfate and selenium concentrations on selenium balance in dairy cows were investigated. Midlactation Holstein cows (n = 30) were fed diets containing either 0.1 or 0.3 mg of supplemental Se (from sodium selenate)/kg of dry matter and 0, 0.2, or 0.4% added S from a mix of calcium and magnesium sulfate in a factorial arrangement. The experiment lasted 112 d. Dry matter intake was linearly reduced with increasing S, but the effect was greater when 0.3 mg/kg of Se was fed (significant interaction). Treatment effects for yields of milk, milk fat, and milk protein were similar to those for dry matter intake. Increased dietary S linearly reduced plasma Se concentrations. Increasing dietary S linearly reduced apparent (42.7, 33.1, and 30.1%) and estimated true (50.5, 46.0, and 42.3%) Se digestibility. Excretion of Se via feces (1.6 vs. 2.8 mg/d) and urine (0.5 vs. 1.3 mg/d) was higher and output in milk (0.4 vs. 0.3 mg/d) was lower for cows fed 0.3 mg/kg of Se compared with 0.1 mg/kg, but no Se effect was found for estimated true Se digestibility. Dietary S from sulfate reduced Se balance especially when cows were fed diets with less than 0.3 mg of Se/kg of diet dry matter.  相似文献   

6.
Objectives were to determine the effect of dietary concentration of P in DM on routes of excretion of P and to evaluate direct and indirect measures of calculating DM digestibility and P excretion. Twelve lactating Holstein cows were fed 20 kg of DM containing .41% P daily for 4 wk and then were assigned randomly to one of three diets: low (.30%), medium (.41%), or high (.56%) in P for 9 wk. Total collections of excreta (feces and urine) and milk were made during wk 4, 7, 10, and 13. At wk 4, cows excreted 88.2% of P consumed daily: 68.6% of excreted P in feces, 1.0% in urine, and 30.3% secreted in milk. Cows assigned to the low P diet decreased intake by 26.8% and excretion of P in feces by 22.7% in wk 13 compared with wk 4, whereas cows fed the high P diet increased intake by 36.5% and excretion of P in feces by 48.6%. Digestibility of DM was 62.6% when calculated from total collection of feces but only 55.7 or 56.5% when estimated indirectly using Cr or acid detergent lignin as indigestible markers. Apparent excretion of P was less than that estimated using either of the marker techniques (49.7 vs. 59.1 and 58.1 +/- .7 g/d of P) because digestibility of DM was underestimated. A prediction equation was developed for P excretion based on P intake and milk production.  相似文献   

7.
In three experiments patterns of water turnover and body composition estimated by deuterium oxide were studied in Holstein cows. In the first experiment, four lactating cows were infused with deuterium oxide, and blood samples were taken during 4-d collection. Milking was stopped; cows were reinfused with deuterium oxide and resampled. Slopes of deuterium oxide dilution curves indicated lactating cows turned water over more rapidly than nonlactating cows. In the second experiment with the same four cows, during 4-d collection, deuterium oxide concentrations in milk, urine, and feces showed dilution patterns similar to deuterium oxide in blood. Sampling milk may be an alternative to sampling blood. In the third experiment, 36 Holstein cows were fed 55, 65, or 75% alfalfa, smooth bromegrass, or equal parts of each forage as total mixed rations; remaining portions of rations were a grain mixture. Body composition was estimated at -1, 1, 2, 3, 4, and 5 mo postpartum. Empty body water, protein, mineral, fat, and fat percentage decreased from prepartum to postpartum. First calf heifers contained less empty body water, protein, and mineral than older cows. Cows fed diets with 55% forage had more body fat than those fed diets with 75% forage. Cows fed alfalfa-based diets had more gastrointestinal fill regardless of grain than cows fed diets that contained alfalfa and smooth bromegrass. Gastrointestinal fill of cows increased from prepartum to 5 mo postpartum.  相似文献   

8.
Fifteen rumen fistulated Holstein cows in late lactation and fed a total mixed ration offered ad libitum were supplemented with Se yeast to provide 0, 11, 20, 30, or 42 mg of supplemental Se/day to test the hypothesis that amounts of Se secreted in milk, excreted in urine and feces, and apparently retained in tissues would increase in direct proportion to Se intake. One-half of the yeast supplement was placed directly into the rumen through the fistula of each cow just before milking in the morning and again in the evening, and estimates of average daily excretion of Se were made using total collections of urine and feces from 25 to 31 d after treatments commenced. Amounts of Se secreted daily in milk and apparently retained in tissues increased linearly with average daily intake of Se. The amount of Se excreted in feces and total excretion of Se in urine plus feces increased curvilinearly with Se intake, such that proportionately less Se was excreted as the amount of Se fed increased. On average, total Se excretion accounted for 66%, Se secretion in milk accounted for 17%, and Se apparently retained in tissues accounted for 17% of total Se intake by cows. Thus, in herds fed large amounts of Se yeast, most of the Se will be excreted and retained on-farm. High concentrations of Se will be found where urine and feces accumulate (e.g., yards and effluent ponds), and effluent management practices must be tailored to avoid environmental issues.  相似文献   

9.
The objective was to determine whether crude glycerin could partially replace concentrate ingredients in corn silage- or cottonseed hull-based diets formulated to support minimal milk fat production without reducing milk production. Multiparous, lactating Holstein cows (n=24; 116 ± 13d in milk) were assigned to dietary treatments arranged in a 2 × 3 factorial design; namely, 2 dietary roughage sources (cottonseed hulls or corn silage) and 3 dietary concentrations of glycerin [0, 5, or 10% on a dry matter (DM) basis]. Four different cows received each dietary treatment in each of 3 periods such that each diet was evaluated using 12 cows. Crude glycerin, produced using soybean oil, contained 12% water, 5% oil, 6.8% sodium chloride, and 0.4% methanol. Glycerin partially replaced ground corn, corn gluten feed, and citrus pulp. Diets of minimum fiber concentrations were fed to lactating dairy cows and resulted in low concentrations of milk fat (averaging 3.12% for cows fed diets without glycerin). The effects of glycerin on cow performance and ruminal measurements were the same for both dietary roughage sources with the exception of feed efficiency. Replacing concentrate with crude glycerin at 5% of dietary DM increased DM intake without increasing milk yield. Concentration and yield of milk fat were reduced when glycerin was fed at 10% of dietary DM. This was accompanied by a 30% reduction in apparent total-tract digestion of dietary neutral detergent fiber. Crude glycerin affected the microbial population in the rumen as evidenced by increased molar proportions of propionic, butyric, and valeric acids and decreased molar proportions of acetic acid. Efficiency of N utilization was improved as evidenced by lower concentrations of blood urea nitrogen and ruminal ammonia-N. Cows fed cottonseed hull-based diets consumed 5.3 kg/d more DM but produced only 1.7 kg/d more milk, resulting in reduced efficiency. Increased production of ruminal microbial protein, molar proportion of propionic acid, and passage of ruminal fluid resulted from feeding the cottonseed hull- versus corn silage-based diets, although apparent digestibilities of DM and neutral detergent fiber were reduced. Replacing 5 and 10% of concentrate ingredients with crude glycerin improved efficiency of 4% fat-corrected milk production when corn silage-based diets were fed but decreased it when cottonseed hull-based diets were fed.  相似文献   

10.
Milk production was measured and phosphorus (P) excretion in feces was estimated in dairy cows fed three amounts of P. A basal diet was formulated to contain 0.31% P (DM basis). Sodium monophosphate replaced corn in the basal diet to give two additional diets containing 0.40 and 0.49% P. The diets were fed to eight, nine, and nine multiparous Holsteins from the beginning to the end of lactation. Milk yields for the 308-d lactation were 10,790, 11,226, and 11,134 kg for the three treatments, respectively. The lowest milk yield resulted from decreased milk production during late lactation with the 0.31% P group. Reproductive performance of the cows was not related to dietary P content. Fecal P concentration, determined in wk 2, 4, 6, 8, 23, and 40 of lactation, increased as dietary P intake was increased. Cows fed the lowest P diet conserved P by minimizing P excretion in feces and urine, whereas cows in the other two treatments excreted more P through these routes. A reduction in dietary P from 0.49 to 0.40% reduced fecal P excretion by 23%. Apparent P digestibilities of less than 40% are indicative of surplus dietary P. Feeding 0.40% P appeared sufficient to maintain P balance and the level of milk production achieved in this experiment. An example is given which illustrates the relationship between dietary and fecal P.  相似文献   

11.
The purpose of this study was to evaluate the impact of polymer-coated urea on nitrogen retention, rumen microbial growth, and milk production and composition. Coated urea (CU) that is more slowly hydrolyzed to ammonia than unprotected urea could potentially be used more efficiently by rumen microorganisms. Eight cows were offered each of three diets in a randomized crossover design. Each treatment period consisted of a 14-d adjustment period and a 5-d collection period. Diets were formulated to maintain milk production while reducing plasma urea nitrogen concentrations and urinary nitrogen excretion. Diets consisted of corn silage, mixed grass/legume haylage, chopped alfalfa hay, corn meal, protein, vitamin and mineral supplements, in a total mixed ration and fed ad libitum. The diets contained 17.9%, 18.1%, and 16.4% CP and 0, 0.77%, and 0.77% CU (dry matter basis) and are denoted as CP18-CU, CP18+CU, and CP16+CU, respectively. Individual feed intakes were measured, and total fecal, and urine collections were conducted. Cows were milked twice daily at 0500 and 1700 h, and the milk sampled for composition and milk urea N analysis. Dry matter intake averaged 23.5 +/- 0.2 kg/d and was not altered by diet. Also, milk fat and true protein were not altered by diet and averaged 3.72 and 3.07%, respectively. Milk yield was highest for diets CP18-CU and CP18+CU. Significant differences were observed in N intake and excretion in urine, feces, and milk between dietary treatments. Cows fed CP16+CU consumed 11% less N than in CP18-CU. Cows fed CP18+CU showed the highest excretion of N in urine, and together with CP16+CU, the lowest N excretion in feces. Nitrogen excretion in milk was lower for cows fed CP16+CU. Calculated N balance was not significantly different between diets nor was it significantly different from zero. Efficiency of N capture in milk protein as a function of N intake was higher for animals on CP16+CU. Urinary excretion of purine derivatives was not different between diets, and estimated microbial CP was also similar. Coated urea was not effective at reducing nitrogen excretion by dairy cattle.  相似文献   

12.
《Journal of dairy science》2022,105(5):4083-4098
Previous research has shown that the brown seaweed Ascophyllum nodosum (ASCO) has antimicrobial and antioxidant properties and also increases milk I concentration. We aimed to investigate the effects of supplementing ASCO meal or monensin (MON) on ruminal fermentation, diversity and relative abundance of ruminal bacterial taxa, metabolism of I and As, and blood concentrations of thyroid hormones, antioxidant enzymes, and cortisol in lactating dairy cows. Five multiparous ruminally cannulated Jersey cows averaging (mean ± standard deviation) 102 ± 15 d in milk and 450 ± 33 kg of body weight at the beginning of the study were used in a Latin square design with 28-d periods (21 d for diet adaptation and 7 d for data and sample collection). Cows were fed ad libitum a basal diet containing (dry matter basis) 65% forage as haylage and corn silage and 35% concentrate and were randomly assigned to 1 of the following 5 dietary treatments: 0, 57, 113, or 170 g/d of ASCO meal, or 300 mg/d of MON. Supplements were placed directly into the rumen once daily after the morning feeding. Diets had no effect on ruminal pH and NH3-N concentration, which averaged 6.02 and 6.86 mg/dL, respectively. Total volatile fatty acid concentration decreased linearly in cows fed incremental amounts of ASCO meal. Supplementation with ASCO meal did not change the ruminal molar proportions of volatile fatty acids apart from butyrate, which responded quadratically with the lowest values observed at 56 and 113 g/d of ASCO supplementation. Compared with the control diet or diets containing ASCO meal, cows fed MON showed greater molar proportion of propionate. Diets did not affect the α diversity indices Shannon, Simpson, and Fisher for ruminal bacteria. However, feeding incremental levels of ASCO meal linearly decreased the relative abundance of Tenericutes in ruminal fluid. Monensin increased the relative abundance of the CAG:352 bacterial genus in ruminal fluid compared with the control diet. Linear increases in response to ASCO meal supplementation were observed for the concentrations and output of I in serum, milk, urine, and feces. Fecal excretion of As increased linearly in cows fed varying amounts of ASCO meal, but ASCO did not affect the concentration and secretion of As in milk. The plasma activities of the antioxidant enzymes and the serum concentrations of thyroid hormones did not change. In contrast, circulating cortisol decreased linearly in diets containing ASCO meal. The apparent total-tract digestibilities of dry matter, organic matter, and crude protein increased linearly with ASCO meal, but those of neutral and acid detergent fiber were not affected. In summary, feeding incremental amounts of ASCO meal decreased serum cortisol concentration, and increased I concentrations and output in serum, milk, feces, and urine.  相似文献   

13.
To evaluate dietary N and P partitioning, 36 Holstein cows grouped by parity were assigned at calving to diets supplemented with soybean meal (S) or a combination of S and blood meal (B). Diets S and B were formulated to contain 16.2% CP and 0.35% P using mono- and dicalcium phosphate (PM) or wheat bran (WB) as the supplemental source of P. Actual dietary P contents were 0.38, 0.36, 0.34, and 0.34% for SPM, BPM, SWB, and BWB. Two-day total collections of feces, urine, and milk were conducted between 30 and 45 d in milk (DIM), then all cows were fed a control diet until 120 DIM. Between 120 and 150 DIM, cows were again fed the diet assigned at calving, then 2-d total collections of feces, urine, and milk were conducted. Milk production was similar for cows fed diets containing WB (SWB or BWB) when compared with cows fed PM. However, DMI tended to be lower, and P intake and total P excretion were lower in response to WB (20.7 kg/d, 71.9 g/d, and 40.3 g/d) compared with cows fed PM (23.0, 86.7, and 46.8 g/d). Apparent digestibility of dietary P did not differ due to source of supplemental P, averaging 45% across diets. The lower P intake by cows fed WB resulted in lower absorbed P and lower retained P (32.2 and 7.5 g/d) compared with those fed PM (40.6 and 13.4 g/d). Apparent N digestibility, urinary N, and N retention were not affected by P source. Blood meal decreased apparent N digestibility and absorbed N, and also decreased P retention compared with S. In later lactation, cows retained proportionately more absorbed N and P in body tissue and secreted less in milk than they did in early lactation. Results indicated the organic source of P (phytate-P) in WB can be used to provide a substantial portion of the P needed in dairy cattle diets after peak lactation, but the amount of WB in the diet during early lactation should be limited to prevent suppression of DMI and P retention.  相似文献   

14.
The objective of this study was to determine the effects of supplementation of protein deficient diet with increasing amounts of urea-N on feed intake, milk yield, rumen fermentation, and nutrient digestibility in dairy cows. The hypothesis was that low rumen ammonia-N concentrations provide suboptimal conditions for rumen microbes and these conditions can be alleviated by urea-N that increases rumen ammonia-N concentrations. To evaluate this hypothesis, the diet was formulated slightly deficient with respect to rumen-degradable protein. To supplement the diet with rumen degradable N, 5 levels of urea-N (0, 17, 33, 49, and 66 g/d) were continuously infused into the rumen of 5 dairy cows according to a 5 × 5 Latin square. Increasing levels of urea-N infusion increased N intake and N excretion in urine and feces in a linear manner and tended to increase milk and milk protein yields. Feed intake and fiber digestibility were not affected by urea-N infusion levels. Rumen ammonia-N concentrations remained low (3.5 mg/100 mL) and did not respond to urea-N infusions levels between 0 to 49 g/d, whereas the highest level of urea-N (66 g/d) increased rumen ammonia-N concentration to 5.1 mg/100 mL (quadratic effect). These observations suggested that rumen microbes efficiently captured ammonia-N from rumen fluid until sufficient intracellular ammonia-N concentrations were attained, after which ammonia-N concentrations started to increase in extracellular rumen fluid. In contrast, milk urea-N concentrations increased in a curvilinear manner (cubic effect) from 4.4 to around 6 mg/100 mL for the medium levels of urea-N and then to 7.9 mg/100 mL for the highest level of urea-N infusion. The current results indicated that 18% of supplementary N intake was secreted in milk and 53% in urine. In spite of low rumen ammonia-N concentrations observed for the basal diet, it was estimated that only 43% of supplementary N was captured by rumen microbes. Estimated true digestibility for supplementary N (93%) provided further evidence that urea-N stimulated microbial N synthesis. The current results indicate that rumen ammonia-N concentration was an insensitive indicator of N deficiency at low levels of diet CP, whereas milk urea-N was responsive to diet CP concentrations at all urea-N infusion levels.  相似文献   

15.
Forty-seven cows (24 primiparous) were assigned to one of four normal (20.5%) ADF diets for wk 2 to 5 postpartum. Dietary treatments in a 2 x 2 factorial design were diets of 13.8 versus 18.8% CP and 0 versus 12 g/d of niacin per cow. During wk 6 to 13 postpartum, cows were fed low (11.8%) ADF diets while maintaining CP and niacin treatments. Low CP diets contained solvent-extracted soybean meal; rumen soybean meal with enhanced undegradable protein was used in high CP diets. High CP diets increased milk protein percentage in multiparous cows and yields of milk, 4% FCM, fat, protein, and SNF in primiparous cows during the normal fiber period. High dietary CP also increased yields of 4% FCM, fat, protein, and SNF in primiparous cows fed normal fiber diets. When switched to low fiber diets, primiparous cows fed high CP diets decreased more in 4% FCM and fat yields than those fed low CP. Primiparous cows fed niacin decreased more in 4% FCM than controls. High dietary CP increased DMI in primiparous cows fed normal fiber diets, but those fed low CP diets increased more in DMI when switched to low fiber diets. Supplemental niacin appeared to interact with dietary CP in multiparous cows, increasing blood glucose and decreasing blood beta-hydroxybutyrate and NEFA concentrations with the high CP, normal fiber diet. Increased dietary CP improved yields of milk and milk components in primiparous cows.  相似文献   

16.
《Journal of dairy science》2019,102(6):5212-5218
Nitrogen concentrations in feeds, feces, milk, and urine samples were measured using 2 analytical methods following different drying procedures. Ten samples of corn silage, alfalfa silage, and concentrates collected from 2017 to 2018 at Krauss Dairy Research Center, The Ohio State University (Wooster), were used. A 4-d total collection digestion trial provided fecal samples from 10 cows (1 sample/cow), and another 10 cows were used to collect milk samples (1 sample/cow) and spot urine samples (1 sample/cow). Spot urine samples were acidified immediately to pH <3.0 when collected. Feed samples were oven dried (55°C) or lyophilized and analyzed using the Kjeldahl (KJ; copper sulfate as a catalyst) method and a combustion method (elemental analyzer; EA). Feces, urine, and milk samples were analyzed for N using the following methods: (1) fresh samples by KJ (referred to as wet KJ), (2) lyophilization (urine and milk for 8 h; feces for 120 h) followed by EA (LYO-EA), and (3) oven drying (milk and urine for 1 h; feces for 72 h at 55°C) followed by EA (OD-EA). Additionally, changes in N content of acidified urine at −20° over 180 d of storage were examined. Nitrogen concentrations in corn silage, alfalfa silage, and concentrates were greater for EA by 6.1, 4.8, and 8.3%, respectively, compared with KJ. Analysis of dried samples via EA compared with wet KJ resulted in lower fecal N content (27.8 vs. 29.3 g/kg of DM). Nitrogen concentration in fecal samples via KJ after lyophilization was lower by 5% compared with wet KJ but did not differ from LYO-EA, suggesting that N losses occurred during drying. Nitrogen determination with EA after drying of samples resulted in greater milk N (5.70 vs. 5.50 g/kg) and urinary N (9.16 vs. 9.06 g/kg) content compared with wet KJ. However, drying method (i.e., lyophilization vs. oven drying) did not affect N content of milk, urine, or feces. The use of EA resulted in lower percentage deviation of N content from duplicate sample assays for most samples (no difference was found for concentrate and fecal N), suggesting that EA was more precise than KJ. In conclusion, drying of feces caused N losses regardless of drying methods. For urine and milk samples, if drying is necessary (i.e., EA), oven drying at 55°C can be used rather than lyophilization. The N content was greater in feeds, milk, and urine when determined with EA versus KJ. In addition, N content in acidified and undiluted urine at −20° changed and should be analyzed within 90 d of storage. The results in the current study, however, did not account for laboratory-to-laboratory variation.  相似文献   

17.
The objective of this study was to evaluate the effects of supplementing xylanase on production performance, nutrient digestibility, and milk fatty acid profile in high-producing dairy cows consuming corn silage- or sorghum silage-based diets. Conventional corn (80,000 seeds/ha) and brown midrib forage sorghum (250,000 seeds/ha) were planted, harvested [34 and 32% of dry matter (DM), respectively], and ensiled for more than 10 mo. Four primiparous and 20 multiparous Holstein cows were randomly assigned to 1 of 4 diets in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments and 19-d periods. Treatment diets consisted of (1) corn silage-based diet without xylanase, (2) corn silage-based diet with xylanase, (3) sorghum silage-based diet without xylanase, and (4) sorghum silage-based diet with xylanase. The xylanase product was supplemented at a rate of 1.5 g of product/kg of total DM. Corn silage had higher concentrations of starch (31.2 vs. 29.2%), slightly higher concentrations of crude protein (7.1 vs. 6.8%) and fat (3.7 vs. 3.2%), and lower concentrations of neutral detergent fiber (36.4 vs. 49.0%) and lignin (2.1 vs. 5.7%) than sorghum silage. Xylanase supplementation did not affect DM intake, milk yield, milk fat percentage and yield, milk protein percentage and yield, lactose percentage and yield, and 3.5% fat-corrected milk yield. Cows consuming corn silage-based diets consumed 13% more DM (28.8 vs. 25.5 kg/d) and produced 5% more milk (51.6 vs. 48.9 kg/d) than cows consuming sorghum silage-based diets. Milk from cows consuming sorghum silage-based diets had 16% greater fat concentrations (3.84 and 3.30%) than milk from cows consuming corn silage-based diets. This resulted in 8% greater fat yields (1.81 vs. 1.68 kg/d). Silage type did not affect milk protein and lactose concentrations. Xylanase supplementation did not affect nutrient digestibility. Cows consuming corn silage-based diets showed greater DM (77.3 vs. 73.5%), crude protein (78.0 vs. 72.4), and starch (99.2 vs. 96.5%) digestibilities than cows consuming sorghum silage-based diets. In conclusion, xylanase supplementation did not improve production performance when high-producing dairy cows were fed corn silage- or sorghum silage-based diets. In addition, production performance can be sustained by feeding sorghum silage in replacement of corn silage.  相似文献   

18.
Eight Holstein cows (4 primiparous and 4 multiparous) were used in a replicated 4 × 4 Latin square design to determine milk production response and N balance when diets had no NRC-predicted excess of rumen-undegradable protein (RUP) or rumen-degradable protein (RDP), 10% RUP excess, 10% RDP excess, or 10% excess of both RUP and RDP. Diets were fed as a total mixed ration with (dry matter basis) 25% alfalfa silage, 25% corn silage, 19 to 21% corn grain, and varying proportions of solvent soybean meal and expeller soybean meal as primary sources of supplemental RDP and RUP, respectively. Milk yield and dry matter intake (DMI) were recorded daily, and total collection of feces and urine was completed in the last 3 d of each 21-d period. Dietary crude protein averaged 17.5 and 18.5% for the recommended and excess RDP diets, respectively, and 17.3 and 18.4% for the recommended and excess RUP diets, respectively. When cows were fed excess RUP diets in the form of expeller soybean meal, DMI and milk production increased, but the opposite was true when the diets contained excess RDP in the form of solvent soybean meal. Milk composition was not affected by RDP, RUP, or by parity, and there were no parity × RDP interactions for any of the measurements. However, apparent digestibility of neutral detergent fiber, dry matter, and N increased in multiparous cows but not in primiparous cows because of excess RUP. The increase in the yield of milk N with excess RUP was not influenced by parity, but multiparous cows retained more of the additional N apparently absorbed, whereas primiparous cows excreted the additional apparently absorbed N in the urine. Overall, the difference in urinary N due to parity (70 g/d) was about 4 times greater than the impact of dietary treatments (17 g/d). Our results suggest that multiparous cows have either a much larger urea pool or a greater demand to restore body protein mobilized earlier in lactation compared with primiparous cows. Reduction in urinary N excretion in commercial dairy herds could be obtained by separately balancing rations for first and later lactations.  相似文献   

19.
The objectives were to determine the effect of dietary fish oil (FO) on uterine secretion of PGF2alpha, milk production, milk composition, and metabolic status during the periparturient period. Holstein cows were assigned randomly to diets containing FO (n = 13) or olive oil (OO, n = 13). Cows were fed prepartum and postpartum diets that provided approximately 200 g/d from 21 d before the expected parturition until 21 d after parturition. The FO used contained 36% eicosapentaenoic acid (EPA, C20:5, n-3) and 28% docosahexaenoic acid (DHA, C22:6, n-3). Blood samples were obtained from 14 d before the due date until d 21 postpartum. A total of 6 FO and 8 OO cows without periparturient disorders were used in the statistical analyses of PGF2alpha-metabolite (PGFM) and metabolite concentrations. Length of prepartum feeding with OO or FO did not differ. Proportions of individual and total n-3 fatty acids were increased in caruncular tissue and milk of cows fed FO. The combined concentrations of EPA and DHA in caruncular tissue were correlated positively with the number of days supplemented with FO. Cows fed FO had reduced concentrations of plasma PGFM during the 60 h immediately after parturition compared with cows fed OO. Concentrations of prostaglandin H synthase-2 mRNA and protein in caruncular tissue were unaffected by diet. Production of milk and FCM were similar between cows fed the two oil diets. However, cows fed FO produced less milk fat. Feeding FO reduced plasma concentrations of glucose. Dietary fatty acids given during the periparturient period can reduce the uterine secretion of PGF2alpha in lactating dairy cows and alter the fatty acid profile of milk fat.  相似文献   

20.
A lactation experiment was conducted to determine the influence of quebracho condensed tannin extract (CTE) on ruminal fermentation and lactational performance of dairy cows. The cows were fed a high forage (HF) or a low forage (LF) diet with a forage-to-concentrate ratio of 59:41 or 41:59 on a dry matter (DM) basis, respectively. Eight multiparous lactating Holstein cows (62 ± 8.8 d in milk) were used. The design of the experiment was a double 4 × 4 Latin square with a 2 × 2 factorial arrangement of treatments, and each period lasted 21 d (14 d of treatment adaptation and 7 d of data collection and sampling). Four dietary treatments were tested: HF without CTE, HF with CTE (HF+CTE), LF without CTE, and LF with CTE (LF+CTE). Commercial quebracho CTE was added to the HF+CTE and the LF+CTE at a rate of 3% of dietary DM. Intake of DM averaged 26.7 kg/d across treatments, and supplementing CTE decreased intakes of DM and nutrients regardless of forage level. Digestibilities of DM and nutrients were not affected by CTE supplementation. Milk yield averaged 35.3 kg/d across treatments, and yields of milk and milk component were not influenced by CTE supplementation. Negative effects of CTE supplementation on feed intake resulted in increased feed efficiency (milk yield/DM intake). Although concentration of milk urea N (MUN) decreased by supplementing CTE in the diets, efficiency of N use for milk N was not affected by CTE supplementation. Feeding the LF diet decreased ruminal pH (mean of 6.47 and 6.33 in HF and LF, respectively). However, supplementation of CTE in the diets did not influence ruminal pH. Supplementing CTE decreased total volatile fatty acid concentration regardless of level of forage. With CTE supplementation, molar proportions of acetate, propionate, and butyrate increased in the HF diet, but not in the LF diet, resulting in interactions between forage level and CTE supplementation. Concentration of ammonia-N tended to decrease with supplementation of CTE. The most remarkable finding in this study was that cows fed CTE-supplemented diets had decreased ruminal ammonia-N and MUN concentrations, indicating that less ruminal N was lost as ammonia because of decreased degradation of crude protein by rumen microorganisms in response to CTE supplementation. Therefore, supplementation of CTE in lactation dairy diets may change the route of N excretion, having less excretion into urine but more into feces, as it had no effect on N utilization efficiency for milk production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号