首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
为实现对太阳能电池片残片的再次利用,针对现有激光划片机对太阳能电池片残片切割效率低、无法大批量加工等问题,设计了一种全自动太阳能残片激光划片机。该设计通过视觉检测系统获取残片的切割路径,由工控机、运动控制卡和PLC控制,实现残片的自动上下料、切割工作台移动以及激光切割功能。通过理论分析和实验研究,证明该设备的残片切割精度和效率能够满足设计要求,可实际应用在太阳能电池片残片再次利用的现代化生产中,具有降低能耗、环境保护的意义。  相似文献   

2.
日本新开发的 CNC 平面磨床可全自动磨削冲裁引线框等高精度模具。集成电路引线框模具的精度要求较高,必须达到2~3μm,新开发的 CNC 精密成形磨床磨削精度可达1μm。主要特征1.同时控制工作台 X 轴和砂轮 Y、Z 轴磨削模具外形;2.砂轮轴采用高精度空气轴承;3.数控指令由键盘或纸带输入。  相似文献   

3.
孟晓华  于大国 《机床与液压》2023,51(24):157-163
空间误差是影响车铣复合数控机床零件加工精度的最重要因素,现有方法对机床各轴的定位精度提升效果不好,为此设计车铣复合数控机床空间误差建模和补偿方法。忽略机床两个旋转轴的位置无关误差,通过齐次坐标变换理论构建其几何误差辨识模型,对几何误差辨识模型进行简化,实现两轴的几何误差辨识。在工件坐标系下,根据旋转轴几何误差辨识结果,采用多体理论构建机床空间误差模型。基于此误差模型,利用理想状态的逆运动学设计同步空间误差补偿策略,通过迭代方式对各轴补偿值进行计算,实现空间误差补偿。测试结果表明:设计方法补偿后,实验机床X轴、Y轴、Z轴的定位精度提升了0.6μm,B轴、C轴的定位精度提升了4″、3″,各轴的重复定位精度有很大提升,机床的反行程实验圆度也有所提升。  相似文献   

4.
利用自主研发的FAD1210高精高效划片机,通过单因素试验法研究了装夹紧固方式、划片刀种类、切割水流量对K9光学玻璃划切性能的影响,且检测其崩边宽度及表面粗糙度来评价划切效果。结果表明:玻璃基板的紧固方式效果较好,UV膜次之,高温硅胶带较差;树脂结合剂划片刀划切玻璃的效果较理想,其崩边宽度较小、表面粗糙度较好,金属刀次之,电镀刀效果较差;切割水流量增大,玻璃崩边宽度和表面粗糙度逐渐减小,当切割水流量大于4.5 L/min时,划切效果趋于稳定。在玻璃基板紧固方式、树脂划片刀和切割水流量4.5 L/min的优化参数下划切K9光学玻璃,划切效果最佳,崩边宽度为5.8 μm,表面粗糙度Ra为10.5 nm。   相似文献   

5.
目的优化硅晶圆划片工艺参数,提高划片质量。方法提出一种硅晶圆分层划片工艺方法,利用自主研发的精密全自动划片机,通过全因素试验,研究了主轴转速、进给速度和切削深度等工艺参数对分层划片与传统单次划片的工艺性能的影响,检测了崩边宽度、相对缝宽、切缝表面粗糙度,通过检测划片过程中主轴电流大小来间接反映切削力的大小。最后对分层划片工艺进行优化试验,得出最佳工艺参数组合。结果随着划片深度的增加,主轴电流增大,进给速度对主轴电流的影响较小,分层划片可以有效减少划片过程产生的切削力,提高划切效果。分层划片试验发现,随主轴转速的增加,相对缝宽增大;随进给速度增大,相对缝宽先减小后增大。进给速度为15 mm/s,转速为10 000 r/min时,相对缝宽最小,为1.048。随着主轴转速的增加,崩边宽度减小;随着进给速度的增大,崩边宽度增大。进给速度为1 mm/s,转速为25 000 r/min时,崩边宽度最小,为5.31μm。结论与传统单次划片方式相比,分层划片工艺能够得到更好的划片效果,可一定程度上降低崩边宽度,减小相对缝宽值,减少微裂纹,提高划切质量。  相似文献   

6.
为提高缸筒的滚字效率,设计了贮油缸筒全自动滚字机。设备采用卧式结构,由机架和工作台、缸筒滚字装置、自动上下料装置组成。工作台和上下料装置安装在机架上,缸筒滚字装置安装在工作台上。贮油缸筒采用安装在滑台上的2组V形块进行定位支撑。对于不同直径和长度的缸筒,可以通过更换V形块和调节2组V形块轴向距离满足不同品种生产需要。此设备的优点在于具有一定的柔性,广泛适用于筒类零件外壁钢字刻印,生产过程全自动,提高生产效率。  相似文献   

7.
介绍了柔性生产线物流小车的结构特点与功能实现。FMS800柔性生产线物流小车承担工件在立体仓库、上下料站与加工单元之间的转运功能,其运动由轨道上物流小车直线移动、工作台双向交换以及提升运动组成,通过电气系统控制与实时监测,完成工件和工作台托盘的转运、识别,保证了FMS柔性生产线作业协调。根据系统参数要求物流小车快速移动速度为:X轴40 m/min、Y轴20 m/min、Z轴20 m/min,通过设计计算,确定物流小车的传动系统参数与相关传动结构。  相似文献   

8.
针对工业上单目视觉系统难以适应工件Z轴位置变化的问题,开发基于单目视觉的Z轴位置自适应识别定位方法与系统。采用激光三角测距原理检测工件坐标系平面与相机坐标系平面的距离,配合下位机微机控制系统实现工件平台Z轴位置自适应,进一步融合HSV颜色空间模型,通过改进模板匹配算法完成工件识别定位。联合Halcon与Visual Studio进行单目视觉Z轴位置自适应识别定位系统软件开发以及实验验证。结果表明:该系统在工作范围内平均定位误差小于1 mm,具有较好的Z轴位置自适应调节能力和较高的定位精度。  相似文献   

9.
目的 为实现超薄碳化硅基片全划切,需在加工出窄线宽(小于25 μm)的切割槽的同时保证基片的强度。方法 使用波长为1 030 nm的红外飞秒激光对碳化硅基片进行全划切加工,通过扫描电子显微镜和光学显微镜分析脉冲重复频率、脉冲能量、切割速度和扫描次数对切口宽度、深度以及断面形貌的影响,采用能谱仪对不同脉冲能量下的划切断面进行微区元素分析,采用激光共聚焦显微镜测量划切断面粗糙度,以及采用电子万能实验机测试划切样品的抗弯强度。结果 划切断面的元素主要有Si、C、O 3种,O元素富集在断面的上下边缘位置。SiO2颗粒喷溅重沉积影响断面微纳结构。断面的粗糙度随脉冲能量的增强而上升,基片强度反而下降。在激光脉冲能量为3.08 μJ、脉冲重复频率为610 kHz、切割速度为4 mm/s、切割12次的条件下,可以加工出宽度为15 μm、深度高于100 μm的良好切割槽,断面粗糙度为296 nm,基片抗弯强度为364 MPa。结论 切割槽宽度和深度与脉冲重复频率、脉冲能量、切割速度和扫描次数有关。O元素的分布说明存在SiO2堆积在断面上下边缘部分的现象。使用小脉冲能量激光进行划切,可以减少SiO2颗粒喷溅重沉积,从而使断面出现大量熔块状结构,得到粗糙度较低的断面形貌。断面粗糙度降低,意味着划切断面存在的微裂纹等缺陷减少,从而使强度上升。本试验最终采用较优激光划切工艺参数,实现了飞秒激光全划切超薄SiC基片,槽宽仅为15 μm。由于短脉宽小脉冲能量高重复频率激光的作用以及激光辐射下SiC材料的相分离机制,基片划切断面烧蚀形貌良好,且抗弯强度较好。  相似文献   

10.
采用Renishaw激光干涉仪检测数控镗铣机床Y轴的正、反向定位精度和重复定位精度,比照精度的定义对测量结果进行分析和探讨,建立Y轴正、反向单向定位精度和反向差值补偿的数学模型,通过840D的丝杠和间隙补偿表功能完成了补偿。检测结果表明:补偿后正、反向定位精度有了较大幅度的提高,反向间隙有了较明显的减小。  相似文献   

11.
在氨基磺酸镍体系电镀液中添加不同浓度的三甲胺硼烷(TMAB),在阴极自旋转状态下利用复合电沉积方法制备不同质量分数的硼的镍-硼/金刚石切割片,探究镀液中不同质量浓度的TMAB对切割片晶体结构、硬度、耐磨性的影响。结果表明:阴极自旋转状态下制备的镍-硼/金刚石切割片中金刚石分布均匀;随TMAB质量浓度增加,镀层的晶粒尺寸减小、硬度增加、耐磨性提高。当TMAB质量浓度为3.0 g/L时,镀层基质金属的晶粒尺寸最小为6.84 nm,硬度最大为2 453.6 HV,磨损量最小为1.7×10-2 mm3,磨损宽度最小为665.4 μm。用厚度为28.3 μm的镍-硼/金刚石切割片切割(111)晶面的N型单晶硅片,硅片切割槽宽度为35.3 μm,切缝比为1.25,最大崩边尺寸为3.1 μm。   相似文献   

12.
为了探讨带标准分度转台的激光角度干涉仪在测量过程中的安装不准直误差对测量结果的影响,在分析回转轴转角误差测量原理的基础上,根据测量光路的几何特征变化规律,提出测量系统的不准直误差模型。研究不准直误差变化对转角误差测量结果的影响,明确了为保证最终测量结果的精度在±1″内宜采取的误差控制措施。通过与自准直仪配合高精度多面棱体方法进行比对实验,并利用不准直误差模型对测量结果进行修正后,可以将测量结果的最大差值减小为-0.52″。结果表明所建立的误差模型的正确性,在准确评估和提高测量系统的精度上有一定的推广价值。  相似文献   

13.
超薄切割片在工作中极易出现径向加工变形。从应力和变形的理论分析、有限元模拟分析和试验研究等方面,对超薄切割片的加工变形研究现状进行总结。此外,分析研究中存在的问题,介绍具有相似结构的砂轮和圆锯片的相关研究成果。结果发现:切割片转速对超薄切割片变形影响的研究比较系统,但磨削深度和进给速度对其影响的相关研究还有一定的差距。同时,切入工件时测量方法的缺失也限制了研究的深入。因此,需要不断完善理论公式并充分应用有限元模拟,持续推进相关研究,优化和补偿超薄切割片的变形,提高工件的加工精度。   相似文献   

14.
大口径方形非球面镜的高效磨削技术研究   总被引:1,自引:0,他引:1  
本文基于X/Y/Z三直线轴平面磨床,研究了圆弧砂轮应用于大口径方形非球面镜的平行磨削新技术,介绍了圆弧砂轮平行磨削的机理、重点解决了砂轮形状误差在线检测、元件面形误差在线检测与误差补偿等关键技术问题.以430 mm×430 mm非球面镜为样件,进行了多轮高效精密磨削工艺实验,面形精度PV均值为4.2μm,表面粗糙度约0...  相似文献   

15.
为优化圆柱滚子外圆研磨,以正交试验研究工件偏角、工件位置及转速(包括上下抛光盘转速、偏心轮转速和外齿圈转速)对材料去除率、表面粗糙度和圆度的影响。结果表明:工件偏角对材料去除率的影响最显著,转速组合次之,工件位置最小;转速对表面粗糙度的影响最显著,工件偏角次之,工件位置最小;工件位置对圆度的影响最显著,转速组合次之,工件偏角最小。最佳条件为工件偏角0°、工件位置0.8,各转速值分别为-76、84、80和48 r/min。加工15 min后,圆柱滚子的材料去除率可达到0.541 μm/min;表面粗糙度由0.078 μm降至0.045 μm,比初始表面粗糙度降低42.3%;圆度由0.74 μm降至0.41 μm,比初始圆度降低44.6%。   相似文献   

16.
永磁同步直线电机(PMLSM)直接驱动xy平台数控系统曲线轨迹跟踪时,其轮廓精度会受负载扰动以及曲线轨迹轮廓误差模型复杂等问题的影响。针对此问题,采用具有自学习能力的模糊神经网络滑模控制(FNNSMC)进行单轴位置控制器的设计,在不失滑模控制鲁棒性的情况下,有效地削弱该控制所产生的抖振;两轴之间运用实时轮廓误差计算法建立曲线轨迹的轮廓误差模型并采用交叉耦合控制(CCC)进行轮廓控制器的设计,实现跟踪误差与轮廓误差的同时减小。仿真结果表明:该控制方案基本消除了抖振,保证xy平台具有较强的鲁棒性和较高的轮廓精度。  相似文献   

17.
多工位冲压生产线自动送料机械手控制系统设计   总被引:3,自引:0,他引:3  
为了提高大型多工位压力机生产线的自动化程度,提出了一种基于PLC和运动控制器共同控制的三次元送料机械手控制系统设计方案。对送料机械手的整体结构、工作流程、伺服系统组成进行了研究和分析,阐述了控制系统的硬件结构设计,详细介绍了PLC以及运动控制器的软件功能设计,并采用触摸屏设计了友好的人机界面。在轨迹控制方面,采用电子凸轮实现机械手在X、Y、Z方向及8个伺服轴的联动。根据机械手的实际运行状况,通过反复实践整定伺服增益参数,得到了理想的响应特性。实验结果表明,该机械手操作方便、运行稳定,当移送负载为120 kg时,机械手的工作速度可达25次·min~(-1)。  相似文献   

18.
目的揭示微细铣削铝合金6061过程中,铣削工艺参数(切削深度a_p、每齿进给量f_z、切削速度v)、顺逆铣方式、刀具磨损对毛刺大小及形态的影响规律,为控制铝合金6061毛刺,提高表面质量,优化切削工艺提供参考。方法基于单因素试验方法,采用涂层硬质合金微直径铣刀,对铝合金6061进行了铣削加工试验,分别对切削参数单因素试验的逆铣、顺铣顶端毛刺大小数据以及刀具磨损、毛刺形态信息进行采集和分析。结果直观绘制了a_p、v、f_z对逆顺铣两侧顶端毛刺大小的影响规律图。单因素切削速度试验中,顺铣侧毛刺最大为323μm,逆铣侧最大为268μm;单因素每齿进给量试验中,顺铣侧毛刺最大为332μm,逆铣侧最大为331μm;单因素切深试验中顺铣侧毛刺最大为314μm,逆铣侧最大为264μm。结论逆铣比顺铣的顶端毛刺小,随切削深度增加,毛刺依次呈现长条须状、撕裂状、波浪形锯齿状。刀具磨损是造成切削过程不稳定的重要因素,同时也会造成毛刺形态和大小不稳定。为尽量减少毛刺,应采用锋利刀具和逆铣方式,控制切削深度,选择合适的切削速度和进给量。  相似文献   

19.
针对工件上多个不同直径管道的筒体内壁焊缝位置信息难于提取的技术问题,设计了一种能识别支管空间位置和尺寸信息的焊缝位置识别传感器,通过该装置采集到的数据,结合已知工件空间位置和尺寸信息,建立管道插接焊缝的位置模型,并推导出基于此模型的焊缝特征矩阵和焊枪姿态矩阵. 将采集的数据结合上述数学模型,在MATLAB软件中进行仿真对比. 结果表明,其精度误差最大为0.25 mm,满足实际焊接精度要求,验证了该传感器与数学模型的准确性. 该传感器及其焊缝特征识别方法具有通用性,对管道插接焊接任务的自动化、智能化具有重要意义.  相似文献   

20.
A five-axis machine is presently one of the most versatile machine tools available and they are becoming increasingly common. To increase the accuracy capabilities of such machines, it is crucial to be able to study the geometric errors of the components and its effect on the quality of machined products. In five-axis machine tools, all linear axes are theoretically perpendicular (dot product, cos 90°=0) to each other and directed along or around the X, Y and Z of the cartesian coordinate system; but in working machines, the axes are nearly perpendicular (cos89.90°≠0) because of manufacturing error and assembly error or quasi-static error. The present paper discusses the development of a generalised error model for the effects of geometric errors of the components of the kinematic chain of a machine in the workspace and the results obtained by this model have been verified experimentally. The effect of geometric error has been studied further for cam profile generation using a five-axis machining centre and an improvement in the profile has been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号