首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 72 毫秒
1.
现有变压器模型无法精确计算变压器谐波损耗,因此提出了考虑集肤效应与邻近效应的变压器谐波损耗模型。对变压器中绕组的电磁场进行了分析,利用坡印亭矢量法得出各层绕组的损耗计算公式,由此分析了集肤效应与邻近效应对绕组的影响,建立了变压器谐波损耗模型。仿真结果表明,和Simulink自带模型相比,利用所提模型计算谐波损耗时精度更高。  相似文献   

2.
现有变压器设计方法没有对谐波下绕组结构进行精确设计,为此提出了一种考虑集肤效应与邻近效应的静电除尘变压器绕组谐波损耗优化设计方法。利用Helmholtz方程对交流谐波下铜箔、矩形及圆形导体绕组的损耗进行了分析及优化,并考虑了磁芯窗口参数的影响,对比了各种优化方法的优缺点及应用场合。样机实验结果表明,该方法可以准确给出谐波损耗最小时的优化结构,适用于大功率定制变压器的设计。  相似文献   

3.
集肤和邻近效应对平面磁性元件绕组损耗影响的分析   总被引:4,自引:1,他引:4  
提高磁性元件的工作频率,可以减少磁性元件的大小。但是随着工作频率的提高,集肤和邻近效应使绕组的损耗增加。文中基于磁性元件绕组的一维模型,对平面磁性元件绕组中的涡流效应进行分析。利用一维条件下,集肤和邻近效应的正交性,得出了集肤和邻近效应各自产生的损耗随绕组厚度和频率的变化趋势,指出简单地把厚绕组分割为薄绕组的并联不能减少绕组的损耗;同时分析利用原副边绕组交叉换位技术减少变压器绕组损耗的原理。通过有限元分析软件和实验证实分析结果的正确性和有效性。  相似文献   

4.
提高磁性元件的工作频率,可以减少磁性元件的体积。但是随着工作频率的提高,集肤和邻近效应使绕组的损耗增加。本文基于磁性元件绕组的一维模型,对平面磁性元件绕组中的涡流效应进行了分析。利用一维条件下,集肤和邻近效应的正交性,得出了集肤和邻近效应各自产生的损耗随绕组厚度和频率的变化趋势。指出简单地把厚绕组分割为薄绕组的并联不能减少绕组的损耗。并分析了利用原副边绕组交叉换位技术减少变压器绕组损耗的原理。通过有限元分析软件和实验证实了分析结果的正确性和有效性。  相似文献   

5.
变压器损耗是影响变压器运行性能的重要因素。在高频效应下,邻近效应与集肤效应会增加变压器绕组损耗。文章基于高频变压器绕组的三维模型,在考虑邻近效应与集肤效应的基础上,应用有限元法对变压器绕组中的涡流效应进行仿真计算。通过计算得出了改变绕组布局可以有减少绕组损耗的结论。并得到了不同绕组布局下,绕组损耗随频率、绕组厚度以及层间距的变化趋势。  相似文献   

6.
考虑谐波及集肤效应的电工钢片旋转异常损耗计算与测量   总被引:1,自引:0,他引:1  
为了准确计算电工钢片的旋转异常损耗,根据谐波分析原理对建立的电工钢叠片有限元模型进行时步有限元仿真;基于旋转铁心损耗计算模型,通过考虑涡流集肤效应对旋转损耗系数的影响结合钢片在中低频率下的损耗测试获得叠片损耗计算的关键系数,间接求得电工钢片中旋转异常损耗的计算式。利用构建的新型三维磁特性测试系统对典型电工钢叠片样品进行椭圆形旋转与交变励磁方式下的宽频铁耗实验测量,并定量地进行了对比与分析。结果表明:2种励磁方式下叠片损耗的变化规律相类似,但其椭圆形旋转各损耗都要比交变时的对应损耗大,必须认真考虑谐波、集肤效应和旋转励磁等对材料特性的影响;所计算出的旋转异常损耗也是相对较小,在1 k Hz时也未占到旋转总铁耗的5%。从而验证了所推导出的计算式和测量手段的正确性与可行性。  相似文献   

7.
以一台型号为ZZDFPZ-340800/500-800的特高压换流变压器为研究对象,分别采用时域分析法和频域分析法对换流变压器在非正弦负载电流作用下绕组的损耗进行计算,得到绕组损耗的详细分布情况,并对这2种方法进行对比分析,得知频域分析法更适用于实际设计。针对GB/T18494.2-2007和IEC-61378标准在计算绕组各次谐波损耗时未考虑不同频率下集肤深度不同的缺点,引入一个谐波损耗因子对其进行修正,获得更加准确的结果值。以修正后的结果值作为变压器设计时的损耗评估保证基准值,可以降低换流变压器的制造成本。  相似文献   

8.
9.
张静林 《电气开关》2011,49(4):45-47
通过严格的推导得出了一种实用谐波损耗计算方法,该方法计算过程简单.所需数据可以直接从电能质量监测仪中得到,在基波损耗已算出的情况下,就可以准确的计算出谐波损耗.将谐波网损从管理线损中剥离出来,一方面理论线损计算更进一步接近真实值,有利于有效降损措施的提出;另一方面也为谐波污染治理提供了有力的手段.  相似文献   

10.
陈彬  陈健  梁旭  唐波  万妮娜 《高电压技术》2022,(8):3119-3131
基于磁耦合三相双有源全桥DC/DC变换器的固态变压器适合于大功率应用场合,精确预估其核心磁性元件—大功率中频三相变压器在非正弦电压激励下的绕组与铁芯损耗,研究不同工作模态、不同绕组联接方式下变压器损耗的变化趋势,对于固态变压器精细化设计至关重要。在对隔离式三相双有源全桥DC-DC变换器工作原理进行分析的基础上,建立Y-Y、Y-Δ和Δ-Δ型绕组联接方式下变换器的等效电路模型和相量图,采用基波分析方法推导出中频三相变压器绕组非正弦电流的谐波计算表达式,考虑各阶次谐波频率下集肤效应和邻近效应对交流电阻的影响,实现绕组损耗的计算。结合不同绕组联接方式下电压波形和移相控制方式,推导出六电平阶梯波和三电平阶梯波电压激励下的分段线性磁密波形表达式,结合各种修正的Steinmetz经验公式的简化解析计算式,计算出不同移相角下的铁芯损耗。针对5 kHz/15 kW纳米晶合金铁芯中频三相变压器模型,将该方法的计算结果与有限元仿真和实验测量结果对比,验证了该方法的有效性。  相似文献   

11.
通过参考IEC61378-2标准提供的换流变压器谐波损耗计算方法,得出计算变压器铜屏蔽杂散损耗的解析公式。基于P21~c-EM1简化模型,采用一种新的杂散损耗测量方法,即通过模型总损耗测量值减去模型激励线圈损耗的精确仿真值得到结构件中的损耗,以此作为实验值,对解析公式计算的结果进行验证。结果表明:铜板的基波损耗计算结果与实验值基本一致;基波叠加多次谐波激励下的铜板损耗与各次谐波单独激励下的铜板损耗之和大致相同;在激励电流频率相同的情况下,铜板杂散损耗与电流大小的平方满足一定的比例关系;在激励电流大小相同的情况下,铜板损耗与电流频率的0.8次方不满足IEC标准给出的频率特性。基于此,引入一个考虑磁场分布的修正因子对频率特性进行修正,通过修正结果与实验值的对比验证了修正因子的合理性。  相似文献   

12.
阐述了谐波和漏磁对大型换流变压器的危害,模拟了换流变压器运行中的谐波电流波形并计算谐波损耗。运用有限元方法对换流变压器内部漏磁场进行分析,得到了换流变压器非正弦瞬态漏磁场分布。  相似文献   

13.
变压器降容率及谐波损耗因子FHL与K的比较   总被引:1,自引:0,他引:1  
谐波电流引起变压器附加损耗,受绕组或油温限制,变压器需要降容量运行.在介绍了反映谐波涡流损耗的两个常见因子,即K和FHL,以及变压器谐波损耗公式的基础上,本文推导了两因子确定最大允许谐波电流值的不同机理及其相互关系.  相似文献   

14.
吕志军 《黑龙江电力》2007,29(3):229-230
阐述变压器介质损耗因数测量注意事项,指出比常规试验增加的测量方式,对查找故障和绝缘判断提供更多依据.  相似文献   

15.
多绕组变压器+变流器结构是高电压、大容量电力电子装置的典型结构之一。在变流器采用PWM全控型器件时,会产生与开关频率相关的高频谐波。以单相拓扑为例,对该结构下的高频谐波特性进行了分析;在考虑多绕组变压器的情况下,得出高频谐波传输等效模型;得到了通过载波移相消除高频谐波的理论依据,并给出了具体移相规律。试验结果表明,当采用正确的载波移相方式后,变压器原边电流波形改善明显。文章的结论可以推广到三相系统中。  相似文献   

16.
配电变压器短路和开路损耗在线测量系统   总被引:1,自引:0,他引:1  
针对配电变压器短路损耗和空载损耗离线测量影响供电连续性的问题,提出一种新的变压器损耗在线测量方法并设计了在线测量系统.依据变压器等效电路模型建立变压器短路阻抗与其一、二次侧电压、电流的关系,并推导出了短路阻抗与空载和短路损耗之间的关系.采用线性拟合方法拟合在线采集到的配电变压器相电压和相电流值来实现短路电阻的在线测量,进而实现变压器短路和空载损耗的在线测量.给出一种新的变压器损耗在线测量方法,建立一套变压器损耗在线检测系统,并在Matlab/SIMULINK仿真平台上进行仿真研究.结果显示,使用该方法计算出的空载损耗和短路损耗分别小于或等于0.4%和2.12%,验证了该方法的有效性和准确性.  相似文献   

17.
在电力变压器绕组绕制过程中,绕组截面存在部分残余应力,会对绕组抗短路强度产生不利的影响,现有电力变压器绕组短路强度研究没有对该部分应力予以考虑。推导了圆环形绕组绕制过程中产生残余应力的计算模型,以试验变压器为例对内绕组的辐向短路强度进行了仿真计算,考虑了绕制过程中产生残余应力的影响,并采用国家标准中部分强度考核指标进行了对比校验,结果表明绕制过程中产生的应力同时包含压缩和拉伸分量,残余应力对电力变压器抗短路强度有不利的影响,对环形压缩应力影响较小,对辐向翘曲应力影响较大;所提变压器绕组短路强度计算模型能够考虑残余应力的影响,通过对比试验测量值验证了数值计算模型的准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号