首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
针对交流微电网电压不平衡工况下直流微电网母线电压二倍频脉动问题,提出一种适用于CLLC直流变压器的两级式双向隔离AC/DC母线接口变换器控制策略。首先,对不平衡工况下交直流母线接口变换器功率传输特性进行分析,并设计抑制交流侧负序电流的控制策略。其次,建立CLLC直流变压器的基波等效模型,并分析其电压增益和输入阻抗特性。在此基础上,考虑不平衡工况下CLLC直流变压器输入电压脉动特点,对CLLC直流变压器进行了参数优化设计并提出了基于脉动电压前馈的控制策略以抑制直流母线电压脉动。最后,通过Matlab/Simulink进行仿真,结果表明,采用所提控制策略,在交流母线电压平衡及不平衡工况下均能保证三相电流平衡的同时抑制直流母线电压脉动。  相似文献   

2.
直流微电网的变换器均通过电力电子变换器接入直流母线,而电力电子变换器缺少惯性和阻尼作用,负载功率突变会引起变换器端口电压电流的振荡,给直流母线带来较大的冲击,影响微电网的稳定性。文中参考虚拟同步发电机在并网逆变器控制中的应用,提出了一种模拟直流发电机特性的储能变换器控制策略,使储能变换器具有直流发电机的端口特性,并建立小信号模型,利用阻抗比判据分析了其小信号稳定性。仿真和实验证明所提控制策略可以增强储能单元维持直流微电网内功率平衡的能力,提高直流微电网的供电质量。  相似文献   

3.
电力电子变压器(power electronic transfoemer,PET)的级联模块存在直流母线电压不平衡的问题,严重影响系统的稳定运行.本文针对电力电子变压器的级联H桥整流器直流侧电压的不平衡问题进行研究.首先,通过建立级联H桥整流器的数学模型,分析了各个级联H桥模块之间产生电压不平衡的原因,并提出了基于调制波矢量重构技术的电压功率平衡控制策略.然后,通过重构调制波矢量,实现直流侧电压平衡,保证了各H桥给定有功功率等量分配,使流经H桥的无功功率按需分配.最后,通过在MATLAB/Simulink环境下进行仿真,验证了本文方法的正确性和有效性.  相似文献   

4.
在交直流混合微电网系统中,绝大部分负载都是通过电力电子变换器与微网母线连接,闭环控制的电力电子变换装置可视为恒功率负载,具有负阻抗特性,在扰动情况下,会影响系统稳定性,甚至导致整个系统无法正常工作.该文考虑恒功率负载动态性能,在储能单元充、放电模式下应用混合势函数理论对并网交直流混合微电网系统进行大信号稳定性分析.首先,将整个系统等效为dq旋转坐标系下的直流系统.接着分别建立储能单元充、放电的混合势函数模型,进行稳定性分析,得出系统大信号稳定性判据.所得到的大信号稳定性判据给出了直流侧稳压电容、交流侧滤波电感、互联变流器电流内环控制参数kip、电压外环控制参数kvp与系统能带恒功率负载功率最大值的关系.对比可知,当储能单元由充电变为放电时,交直流混合微电网系统能带恒功率负载的功率最大值显著增加.最后,应用Matlab软件搭建交直流混合微电网系统仿真模型,仿真结果表明,所提判据能够保证交直流混合微电网系统大扰动下的稳定性.  相似文献   

5.
提高直流微电网动态特性的改进下垂控制策略研究   总被引:2,自引:0,他引:2  
从理论上分析了功率扰动对输出电压的影响因素,提出一种阻性虚拟阻抗加补偿虚拟阻抗的改进下垂控制策略,阻性虚拟阻抗实现直流微电网稳态时的功率分配,补偿虚拟阻抗提升其动态性能;通过对一个简单的直流微电网进行小信号建模,给出了补偿虚拟阻抗的参数设计过程。仿真和实验结果表明,补偿虚拟阻抗下垂控制策略能够提升母线电压的动态特性,阻尼特性增强。  相似文献   

6.
固态变压器是交直流混合配电网的核心装置。针对低压直流配电网一般采用双极性供电的特点,提出了一种基于电压平衡器的固态变压器拓扑。所提拓扑的中间级DC/DC包括输入半桥、双有源桥和电压均衡3部分,结合其运行模式给出了各部分的控制策略。为了分析系统的大信号稳定性并加快仿真速度,给出了中间级DC/DC子模块的大信号回转器模型,并采用仿真方法验证了所提拓扑和控制策略的有效性。所提出的基于电压均衡器的固态变压器具有多个电压端口,能够与中高压电网及低压电网相连,提供自身用电或组网运行。  相似文献   

7.
三相不平衡是配电网常见的扰动之一,它会使电力电子变压器内部级联模块产生功率偏差,破坏高压直流链路层各个级联模块功率平衡,导致直流母线电压波动。传统解决方法多采用功率反馈型被动控制策略,这里通过对级联型电力电子变压器并网逆变器直流链路层三相功率方程的分析,提出主动补偿序电压调节三相功率流动方法,目的是使三相功率重新平衡,保持直流母线电压稳定。还分析了零序电压补偿法和负序电压补偿法的作用机理,简要讨论了两种方法在实际应用中的差异。仿真及实验分析表明,序电压补偿法具有良好的跟踪控制性能,响应快,且具有抗干扰能力强、暂态性能优越等特点。  相似文献   

8.
直流微网无需考虑频率、相位等因素,拓扑结构简单且易于控制,但基于大量电力电子变换器接口的直流微网惯性较低,严重时会影响微网的安全稳定运行。针对此问题,文中通过分析扰动时电压波动各阶段系统对惯性的需求,以及惯量阻尼参数对系统惯性的影响,提出了一种附加动态调节系数的惯量阻尼自适应控制策略,可以根据电压变化率与电压偏差灵活调节系统惯性,减小功率波动对母线电压的影响。建立了系统小信号模型,利用阻抗比判据分析了惯量阻尼参数的小信号稳定性。最后利用PSCAD/EMTDC仿真软件建立了直流微网仿真模型进行分析,验证了控制策略的有效性。  相似文献   

9.
为了保证电力电子变压器端口故障切除快速响应,在直流端口侧会配有直流固态开关。而当电力电子变压器直流端口电压已经建立,在固态开关闭合瞬间,电力电子变压器直流端口的电容会对固态开关内电容进行充电,在考虑线路阻抗特性情况下,直流端口传统位置的电流传感器会由于线路阻抗和固态开关中电容产生振荡,严重会引发过流保护整机闭锁。文中对电力电子变压器直流端口进行建模分析,简化成RLC电路串联响应特性,对电力电子变压器直流侧的电流振荡波形展开分析,并提出了电流互感器测点优化选取原则,仿真和试验验证了所提理论的正确性。  相似文献   

10.
对基于电压源型换流器的多端直流输电(VSC-MTDC)系统的协调控制策略进行了分析研究,提出了基于附加有功功率信号的平衡控制策略,具有不需要站间通信和模式切换的优点。对VSC-MTDC系统各换流站传输功率与其直流电压之间的关系进行分析,由并联型接线方式的VSC-MTDC系统结构推导了各换流站直流电压正常及极限工作范围,结合定有功功率换流站的改进有功功率-直流电压特性曲线,计及换流站可调容量裕度,给出了有功功率附加信号的计算方法,并分析了在正常运行及直流电压控制站故障时采用附加有功信号的定功率换流站维持有功功率平衡及直流电压稳定的工作原理。在电磁暂态仿真软件PSCAD/EMTDC中进行仿真验证,结果表明在直流电压控制站扰动情况下,所提出的控制方法可以维持系统有功功率平衡及直流电压的稳定。  相似文献   

11.
对传统的比例式脉冲补偿电压平衡控制策略进行了建模分析。通过分析发现大范围投切载时输出电流扰动对平衡控制的影响不可忽略。在此基础上给出了投切载时系统调整时间、输出电压跌落值与系统特征参数之间的关系曲面。针对投切载时比例式脉冲补偿电压平衡控制下CHBR动态性能差的问题,结合输出电流与输出电压纹波峰值之间的关系,通过将输出电压纹波峰值引入电压平衡环节,提出了纹波电压前馈电压平衡控制策略,并给出了纹波电压峰值的检测方法。最后,利用三级CHBR的仿真模型和实验平台对所提策略与比例式脉冲补偿电压平衡控制策略进行了比较测试。测试结果表明所提策略在切载后各级输出电压间的最大不平衡电压减小了12 V,调整时间缩短了43 ms,证明了所提策略的正确性和有效性。  相似文献   

12.
在部分阴影的条件下,光伏阵列的P-U特性曲线呈现多峰值。针对现有方法在多峰值情况下最大功率点追踪的速度和准确度的不足,提出了一种基于功率闭环控制的改进方法。该方法首先采用功率闭环控制确定最大功率点所在电压范围,其次通过分析粒子群法和0.8倍开路电压法,选取适合算法对该电压范围进行精确的追踪。最后以两种典型的阴影条件为例,对现有的基于功率闭环的方法和所提方法进行对比仿真。结果证明了两种方法均能精确地追踪最大功率点,所提方法在追踪速度上有显著提升。  相似文献   

13.
为了监视电动式高压隔离开关合闸状态,采用图像识别方法对高压隔离开关是否合闸进行监测,确保检修人员的安全。提出了一种融合NSCT和二维最大熵分割方法对图像进行分割,并提取出感兴趣区域(闸刀)。再通过像素积分投影法对闸刀分合闸情况进行特征提取,将提取到的特征值导入BP神经网络中进行训练,得出一个能够自动识别闸刀位置的分类器。将采集的图片导入BP神经网络分类器中进行识别实验论证。实验表明,处理后的图像抗噪能力强,训练出的BP神经网络对闸刀合闸状态的识别率高,达到95%以上。  相似文献   

14.
为解决配电网调度监控系统数据体量不断增大导致数据检索速度越来越慢的问题,结合数据同步技术与倒排索引机制,提出了一种二级索引架构。使用数据库的同步组件与索引器生成非主行键索引,在搜索时先获得数据主行键,再根据主行键检索到需要的数据,完成非主行键检索,再利用倒排索引技术改变数据的信息结构,缩短检索时间。以某铁路局10 kV供电调度监控信息为算例,进行非主行键检索测试。结果表明:完成非主行键检索所用时间为161 ms,满足在配电网调度监控系统中对数据进行快速检索的工程应用需求。  相似文献   

15.
下垂控制是船舶直流微电网中一种实现系统能量分配的有效方法。在传统下垂控制中,系统内各微源之间线路阻抗不一致,导致各分布式微源承担的功率也不一致,严重时微源直流变换器甚至出现过载故障。为了解决船舶直流微电网中由线路阻抗引起的负载均流精度问题,提出利用低频注入来检测线路阻抗的方法。通过在电感电流上注入低频交流信号,检测注入后的变换器电压、电流信息,利用傅里叶变换求得线路阻抗值,进一步补偿下垂系数。该方法可以提高微电网系统直流母线电压质量,改善直流变换器并联均流时的负载均分效果,对系统稳定运行影响小。最后仿真结果验证了该方法的有效性。  相似文献   

16.
针对光伏发电输出电压的间歇性、随机性问题,提出分布式光储直流供电系统的电压稳定协调控制,实现高可靠性和高品质供电。针对光伏/储能电源输出低电压、大电流,且纹波大特点,提出三相交错并联变流器拓扑,有效抑制光伏输出电压波动。光伏升压变流器设计改进的极值搜索法,实现光伏系统最大功率点跟踪,改善传统算法动态性能。针对光伏输出电压波动问题,储能双向变流器采用电压-电流双环控制策略,采用非线性微分平滑控制方法设计外环电压环,实现系统直流母线电压稳定控制的同时,确保存在负载突变或控制参数摄动的情况下,系统依然能够快速跟踪直流母线电压期望值。结合内环电流环的线性PI控制,实现分布式光储直流供电系统功率平稳,供电可靠。基于Matlab/Simulink的仿真结果表明,所提出的非线性微分平滑控制方法具有结构简单、稳态误差小、系统稳定性好等特点。  相似文献   

17.
针对分散式小型风力发电场,提出了一种改进的RMC(Reduced matrix converter)结构。其特点为:永磁直驱风力发电机之间进行直流并联,母线电压经过含高频变压器的DC-DC结构进行升压。采用直流并联,减少了风力发电的随机性和波动性,对电网电压、频率的影响较小;而DC-DC升压结构代替换流站,较适用于分散式小型风力场。为有效实现发电机的切、并网,设计了对发电机输出电压瞬时采样,来判断发电机整流器侧是否连接到直流母线的断路器模型。基于Matlab/Simulink仿真平台搭建了一组永磁直驱风力发电机、PWM整流器、断路器及含高频变压器的DC-DC仿真模型,并进行了1或2台发电机在母线已并有2、5或8台发电机的情况下切、并直流母线与升压的仿真分析。结果表明,在理想状态下,该模型可以实现1或2台的风力发电机切、并直流母线与升压,且7台运行时效果较好。  相似文献   

18.
针对微电网中存在的非线性和参数变化等问题,为提高微电网直流母线电压控制的稳定性,提出了一种ESO与Backstepping相结合的控制方案。采用ESO观测系统的非线性及参数变化,采用Backstepping方法设计控制器,在补偿系统非线性和参数变化的同时保证系统的稳定性。并将所提的ESO-Backstepping控制方法与经典PID、Backstepping控制方法进行对比。仿真结果表明ESO-Backstepping控制方法在微电网非线性系统参数发生变化的情况下,仍可实现对直流母线电压的稳定控制,方法简单有效、稳定性好、鲁棒性强。  相似文献   

19.
针对孤立交直流混合微电网中双向AC/DC换流器在外界扰动下出现电压波动的问题,设计了一种应用于双向AC/DC换流器的母线电压扰动观测器,以实现在分布式电源出力和负荷功率变化等外界扰动情况下对系统扰动量的快速跟踪,且无需增加额外的电压或电流传感器,保证了交直流混合微电网内分布式电源和负荷的即插即用功能。进一步地提出了基于扰动观测器的孤立交直流混合微电网双向AC/DC换流器电压波动控制策略,以有效抑制暂态电压波动和冲击,提高了孤立混合微电网在不同扰动下的动态响应性能和鲁棒稳定性。在PSCAD/EMTDC平台上搭建了孤立交直流混合微电网仿真模型,通过在不同暂态过程下的仿真测试验证了所提方法的有效性和正确性。  相似文献   

20.
在电网发生电压跌落故障的情况下,双馈异步发电机(Doubly-Fed Induction Generator,DFIG)多采用撬棒保护电路以实现低电压穿越(Low Voltage Ride Though,LVRT),而撬棒阻值的选择对机组的LVRT效果影响很大。从DFIG在电压跌落故障下的暂态数学模型出发,运用空间矢量分析和拉普拉斯变换的方法,推导出风电机组在电压跌落故障下的暂态电流时域表达式、转子侧故障电流的计算式。由此提出一种切合工程实际的撬棒阻值整定方法,解决了投入撬棒保护电路后转子侧出现过电流和直流母线过电压的问题。算例及仿真实验数据均表明,采用该方法可有效抑制暂态故障分量,显著提高风力发电系统的LVRT水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号