首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
生物质与兰炭掺混燃烧被认为是解决大量碳排放、NOx和SO2 等空气污染相关问题的潜在途径。分别通过热重试验和滴管炉试验研究纯兰炭、兰炭与生物质混合物空气分级燃烧特性,分析掺混比对混合燃料着火温度、燃尽温度、结渣特性、沾污特性及燃烧特性指数的影响,确定适宜空气分级燃烧比例、最佳燃烧温度和最佳掺混比。结果表明,掺烧生物质可有效降低混合燃料着火点,其着火点由474℃降至300℃,掺烧生物质后燃尽温度略降低,兰炭掺混生物质燃烧未明显提高燃烧特性指数;兰炭粉掺混生物质燃烧有高灰分沉积倾向,结渣倾向小。相比掺烧前,不同温度掺烧生物质后出口NOx和SO2质量浓度均较低,1 200℃出口NOx和SO2质量浓度降幅均较高,分别达87.27%和80.2%。未空气分级时,综合出口NOx等参数得出,适宜生物质质量分数为30%~40%,最佳燃烧温度1 200~1 300℃。分级燃烧时,生物质质量分数30%的NOx初始排放随温度变化平缓,稳...  相似文献   

2.
牛芳 《洁净煤技术》2015,(2):106-108
为提高兰炭在煤粉工业锅炉上的燃烧效率,以陕西煤业化工集团生产的兰炭为原料,进行煤粉工业锅炉燃烧试验,分析了兰炭着火、稳燃、燃烬情况;针对兰炭燃烧过程中存在的问题提出解决方案。结果表明:高效煤粉工业锅炉双锥燃烧器的独特结构和浓相燃烧的方式,为兰炭的着火和稳燃提供了良好条件。在过量空气系数1.2,一、二、三次风比例分别为0.11、0.47、0.42,预热时间3 min,伴燃时间4 min的条件下,实现了兰炭粉的着火和自维持稳定燃烧,燃烧期间后部温度保持在550℃,炉膛中部温度大于800℃。针对兰炭燃烧存在燃烧器内燃点靠后、着火区域温度低和兰炭燃烧不完全等问题,提出可通过调整燃烧室的结构和尺寸,使燃烧器蓄热能力增强,延长煤粉预热时间,产生更多高温回流烟气,使兰炭在燃烧器中快速着火并稳定传播到炉膛,降低兰炭灰残炭率,提高燃烧效率。  相似文献   

3.
兰炭具有热值高、灰分低、硫分低等优点,但挥发分含量低、着火温度高;秸秆热值低、挥发分含量高,着火温度低;二者着火特性具有互补性。为考察兰炭与生物质混合燃料燃烧的硫氧化物、氮氧化物排放和灰熔融性能,利用固定床试验系统研究了3种兰炭、麦秆和玉米秆单独及混合燃料污染物排放特性及掺混比例和燃烧温度对污染物析出的影响,并通过灰熔融测定仪分析灰样熔融性能。结果表明:混合燃料的硫氧化物、氮氧化物析出与掺混条件相关,原料组成和燃烧过程影响污染物析出特性。在燃料中掺混20%~30%玉米秆时,混合燃料固硫效果较好,氮析出率在0.04%左右。提高燃烧温度明显促进硫析出,而低于1 000℃时,府谷兰炭和玉米秆的掺混样具备良好的自固硫特性,氮析出率低于0.02%。另外,混合燃料的灰熔融温度介于两原样间,与混合比例存在一定相关性,兰炭的抗结渣特性明显优于玉米秆,掺混有助于改善秸秆的结渣特性。本研究为兰炭和生物质的清洁利用提供理论参考。  相似文献   

4.
可再生能源生物质清洁低碳、易于获取、利于着火,含硫、氮量少且属于碳中性物质,但其能量密度低。在煤粉中大比例掺混生物质(生物质/煤粉质量比大于5∶5)可有效改善煤粉着火特性,碳排放水平接近燃烧天然气,且污染物排放显著降低,进而达到节能减排目的。目前研究主要集中在低掺混比例(小于5∶5)下生物质与煤粉的混燃特性,针对北方常见的玉米秸秆、稻杆和玉米芯等生物质与煤粉在大掺混比例下的燃烧特性,尚有待深入。笔者利用热重分析技术分别研究了煤粉与不同生物质种类(玉米秸秆、稻杆及玉米芯)在不同掺混比例下(5∶5、6∶4、7∶3和8∶2)的混燃特性,分析生物质种类和掺混比例对混合燃料的着火温度、燃尽温度、交互反应以及燃烧特性指数等的影响,确定了不同生物质的最佳掺混比例。结果表明:掺混比例对混合样品失重曲线的影响从大到小依次为玉米秸秆、玉米芯和稻杆。随掺混比例增加,第1阶段最大质量变化速率逐渐增大且燃烧进程前移,第2阶段则逐渐减小,这是由于挥发分相对增加且焦炭相对减少的原因。混合样品的着火温度和燃尽温度比纯煤粉分别下降约100和60℃。随掺混比例的增加,玉米芯着火温度逐渐减小,玉米秸秆和稻杆则先减小后增大,且均在7∶3时达到最小;燃尽温度均呈现下降趋势,下降幅度由大到小分别为玉米芯、稻杆和玉米秸秆。玉米秸秆和稻杆在8∶2时燃尽性能较差。混合样品发生不同程度的交互作用,该交互作用正是生物质的促进和抑制的协同作用,使3种生物质均在5∶5时对煤粉燃烧抑制作用大;玉米秸秆和稻杆在7∶3时、玉米芯在6∶4、8∶2时促进作用大。同时,3种生物质的燃烧特性指数远大于煤粉,随掺混比例的增大,玉米芯的燃烧特性指数变化最大并在8∶2时达到最大值,6∶4和7∶3时几乎相同;稻杆的变化最小且在7∶3时达到最大值;玉米秸秆在7∶3和8∶2时几乎相同并达到最大值。小范围改变掺混比例时,燃烧特性指数变化不大。这可能是由于燃烧特性指数不仅与着火温度和燃尽温度有关,还与样品在其主要燃烧过程的反应速率有关,而煤粉在焦炭燃烧阶段的反应剧烈程度高于生物质挥发分析出阶段,使不同掺混比例的混合样品出现以上现象。  相似文献   

5.
为研究煤粉与有机固废热解气的混燃特性,基于某330 MW机组四角切圆锅炉,搭建了煤粉掺烧热解气模型,考察了掺混比为10%,20%和30%的热解气对炉膛速度场、温度场及燃烧产物排放等的影响规律。结果表明,掺混比为30%以内的热解气与煤粉混燃对炉膛内整体速度场没有显著扰动,流场分布良好;掺烧工况与纯煤粉工况的温度变化趋势基本一致,且掺混比越大,炉膛最高温度和出口温度越低;掺混热解气替代部分煤粉,能有效降低炉膛出口污染物NOx的排放量。随着掺混比增加,炉膛出口处NOx含量分别是384.8,327.8,292.3,250.7 mg/Nm3;掺混热解气对烟气停留时间影响不大,能在一定程度上提高煤粉燃尽率。  相似文献   

6.
生物质作为可再生能源,具有资源丰富、着火容易、污染物排放低等优点,但存在能量密度低、水分高等缺点。煤粉则具有能量密度高的优点和着火困难、污染物排放高等缺点。将生物质高比例掺混入煤粉(生物质/煤粉质量比大于5∶5),可有效解决生物质利用率低、能量密度低、煤粉着火较难和污染物排放高等问题,提高能源利用率,实现节能减排,该方法已成为一种新型能源利用技术。目前学者研究主要集中低掺混比例(小于5∶5),国内常见生物质与煤粉在高掺混比例下的混燃特性尚有待深入研究。采用热重分析法研究了不同生物质(玉米秸秆、稻杆、玉米芯、棉花及杨木屑)与煤粉在高掺混比例下(0∶10、5∶5、6∶4、7∶3、8∶2、10∶0)的燃烧特性和动力学特性,分析了不同生物质种类及掺混比例对燃料热失重特性、特征温度、反应动力学、燃尽特性及燃烧特性指数等影响,并确定不同生物质的最佳掺混比例。结果表明:混合样品的失重曲线表现为失水、挥发分燃烧、固定碳燃烧3个阶段。最大失重速率在第1阶段变小,第2阶段变大,燃烧整体前移。混合样品的着火温度和燃尽温度分别比煤粉下降约100和40℃,在协同作用下,掺混后杨木屑的着火温度随掺混比例的增加而增...  相似文献   

7.
燃煤锅炉掺烧生物质具有改造成本低、调峰灵活、运行安全等特点,实现生物质高效利用的同时,对于碳减排有积极作用。目前已经开展了大量燃煤锅炉中掺烧污泥等物质的试验与模拟研究,但鲜见燃煤锅炉中掺烧酒糟的数值模拟研究。为了研究燃煤锅炉中掺烧酒糟对炉内温度场、组分浓度场以及NOx排放等的影响,采用计算流体力学软件FLUENT中的涡耗散模型模拟煤粉与酒糟颗粒的混燃。结果表明,数值模拟具有可靠性;在满负荷下,模拟得到的出口氧量、飞灰含碳量及NOx排放与相同条件下的试验结果吻合较好。酒糟掺烧质量分数分别为0、3%、6%、8%、10%的模拟计算结果显示,掺烧酒糟后,燃烧器喷口附近着火距离缩短,但炉膛整体温度场无明显变化。掺烧酒糟对炉膛内的O2体积分数分布无太大影响,由于受酒糟含水量的影响,水蒸气体积分数在燃烧器喷口附近有所提升。掺混酒糟对NOx排放的影响较明显,这是掺混燃料氮含量和生物质挥发分释放造成的还原性氛围交互作用的结果。  相似文献   

8.
半焦是低阶煤经低温热解后的产物,着火和实现稳定燃烧较原煤需更高温度,为拓展其在电厂动力用煤等领域的应用,有必要引入一些易燃高挥发分煤种作为混燃燃料;同时国内外关于混煤燃烧研究多是基于小型试验台和数值模拟,而非中试规模的试验系统。基于此,在350 k W热态试验炉上开展了不同挥发分煤种(褐煤、烟煤、次烟煤)与神木热解半焦混燃热态试验研究。通过测量燃烧器下游主燃区不同轴向位置、径向位置处炉膛温度以及O_2、CO、CO_2、NO_x等气体成分浓度,研究掺混煤质变化对混合燃烧(半焦质量掺混比50%)的着火特性以及NO_x生成影响。结果表明:混合燃料浓侧煤粉射流的着火优于淡侧,O_2消耗及燃烧产物生成也主要集中在浓侧;随着混合煤质V_(daf)增加,混煤射流着火距离减小,燃点下降,燃烧器出口与稳定燃烧区之间的距离随之缩短;主燃区出口截面处,褐煤+半焦、烟煤+半焦、次烟煤+半焦混合射流中心的NO_x浓度分别为473、462、532 mg/m~3(6%O_2下,下同),对于褐煤+半焦、烟煤+半焦混合射流NO_x浓度差值较小,仅为11 mg/m~3。综合考虑着火距离、燃烧强度和主燃区NO_x排放量,适合较大比例混合热解半焦(半焦掺混比50%)混燃煤质的V_(daf)不宜低于16%。  相似文献   

9.
旋流对冲燃烧锅炉在燃用劣质煤种时,由于劣质煤着火困难,会造成主燃区温度较低,引起炉内燃烧不稳定,并且水冷壁经常发生高温腐蚀和结渣,上部对流受热面超温,飞灰含碳量也增加,锅炉热效率明显降低,是目前电站锅炉运行面临的一大难题。针对某1 000 MW旋流对冲燃烧锅炉,采用CFD方法研究了锅炉燃用劣质煤种时炉内燃烧组织的分布特性,并将结果与设计煤种进行了对比分析。结果表明:与设计煤种相比,劣质煤灰分高,热值低,原燃烧器的分级配风方式不利于劣质煤粉及时着火,燃点推迟,炉膛水平截面温度分布不均匀,四周水冷壁中心附近出现高温区和高浓度CO,炉膛中心高温区减小,火焰中心上移,因此对流受热面附近出现高温区域,这些会导致水冷壁高温腐蚀,对流受热面超温问题发生,同时出口烟温也会增加,即锅炉效率降低。另外,由于分级燃烧组织的不合理,炉膛出口NOx生成量也明显增加。在实际运行中,可以采用混煤掺烧的方式,改善劣质煤种的燃烧特性,从而提高锅炉燃烧稳定性;其次,可以对原旋流燃烧器进行改造优化,如适当减小一次风速,或者在水冷壁中心增设墙式风,保证劣质煤粉有足够的时间预热并能够及时与二次风混合,稳定着火,提高锅炉燃用劣质煤种的能力。  相似文献   

10.
燃煤耦合污泥发电技术研究主要聚焦在掺混比等条件的影响,而主燃区过量空气系数等因素的影响规律尚不清晰。鉴于此,采用涡耗散模型对600 MW四角切圆煤粉锅炉掺烧市政污泥进行数值模拟研究,分析了污泥掺混比例、主燃区过量空气系数以及二次风配风方式对燃煤锅炉内污泥掺混燃烧及NOx生成的影响。结果表明:随着污泥掺混比增加,炉膛整体温度下降,影响燃烧稳定性,同时炉膛出口NOx浓度有所降低。当污泥掺混比例增长至20%,炉膛出口温度约下降100 K,NOx浓度减少53.2%。而污泥掺混比例对于炉膛内速度场分布影响较小。随着主燃区过量空气系数由0.72增加至0.96,炉膛出口温度增幅较小,仅增加15 K左右,而NOx浓度则大幅增长,由174.39 mg/m3增长至352.09 mg/m3,约增长50.4%。在本文过量空气系数范围内,考虑温度和NOx浓度,推荐主燃区过量空气系数0.84。不同二次风配风对燃煤锅炉掺烧污泥影响差异较大。5种配风方式下,炉膛出口温度和NOx浓度有较大变化。鼓腰配风下炉膛出口温度最低,为1 289 K,而倒塔配风温度最高,为1 341 K。同时鼓腰配风下NOx浓度较高,为207.77 mg/m3,束腰配风NOx浓度较低,为156.42mg/m3。综合温度和NOx浓度,本文二次风配风推荐采用束腰配风方式。  相似文献   

11.
为促进城市污泥的资源化利用,解决污泥物理处置中存在的二次污染问题,以及传统污泥干化焚烧中干燥成本高的问题,提出了将污泥浆与煤粉掺混制备污泥水煤浆,利用具有强化燃烧功能的中心逆喷双锥燃烧器燃烧的技术思路。通过热重分析试验对比了煤粉、水煤浆、污泥水煤浆的燃烧特性,并利用数值模拟研究污泥水煤浆在双锥燃烧器上的燃烧特性,通过降低二次风量、提高二次风旋流强度及二次风温度等强化燃烧的措施,研究污泥水煤浆在双锥燃烧器上应用的可行性。污泥水煤浆的基础燃烧特性试验结果表明,水煤浆中水分超过35%,除影响燃料热值外,水蒸发吸热是影响污泥水煤浆燃烧过程着火和燃尽的关键因素。由于水分的存在,水煤浆起始着火温度高于煤粉11. 3℃,燃尽温度低于煤粉13. 6℃,其最大吸热速率为0. 504 k W/kg,占水煤浆最大放热速率的56. 05%,总吸热量为1. 917 MJ/kg,占燃烧放热量的9. 94%;掺烧20%污泥时,污泥水煤浆起始着火温度高于水煤浆12. 3℃,燃尽温度低59. 1℃,水蒸发吸热量为0. 546 kW/kg,比水煤浆燃烧高8. 4%,总放热量为16. 88 MJ/kg,比水煤浆燃烧低12. 5%。通过采用双DPM的离散相数值模拟模型,充分考虑污泥水煤浆燃烧时水蒸发过程的影响,对污泥水煤浆燃烧的数值模拟更接近实际结果。14 MW双锥燃烧器的污泥水煤浆燃烧模拟结果表明,直接使用现有双锥燃烧器无法实现污泥水煤浆的稳定燃烧,仅可燃烧水含量为25%左右的污泥水煤浆。污泥水煤浆中水含量由0增至35%时,平均每提高1%水含量,燃烧器出口温度下降7. 95℃,燃烧器内平均温度下降7. 69℃;水含量为35%时,燃烧器内平均温度降低269℃,燃烧器出口平均温度降低278℃。污泥水煤浆在双锥燃烧器内的燃烧,可通过降低二次风量、增加二次风旋流强度、提高二次风温度等强化燃烧措施实现。二次风旋流强度由1变为2时,燃烧器出口平均温度提高20℃,二次风量减少为理论空气量的0. 6,燃烧出口平均温度提高203℃,综合使用降低二次风量、增加旋流强度和提高二次风温的措施后,燃烧器出口平均温度提高289℃,基本接近该燃烧器燃用煤粉时的燃烧条件,双锥燃烧器基本可达到稳定燃烧污泥水煤浆的目的。  相似文献   

12.
为探究生物质气与煤粉混燃对锅炉燃烧特性和污染物生成特性的影响,采用Fluent软件模拟600 MW超临界对冲锅炉内生物质气与煤粉混燃过程,研究在0、10%和20%三种不同混燃比条件下,稻壳、木屑、麦秆和稻秆混合原料气化450℃的生物质气与煤粉混燃时对锅炉燃烧特性以及污染物生成特性的影响。结果表明:加入生物质气与煤混合燃烧时,混燃比增加,利于促进锅炉的燃烧,但锅炉产生的烟气量增加,使锅炉整体燃烧温度降低;混燃比每增加10%,燃烧温度降低50℃;随着混燃比增加,锅炉内O_2含量整体下降,燃烧更加剧烈,CO迅速发生反应并完全反应,CO_2生成量上升,而SO_2和NO_x体积分数下降,20%混燃比时分别可最大降低21%和48%。模拟研究的混燃结果较为可信,混燃生物质气可显著降低锅炉污染物排放。  相似文献   

13.
生物质作为零碳排放的可再生能源,被视为良好的燃煤替代燃料,与煤粉耦合燃烧是实现生物质利用的关键技术。为研究煤粉耦合掺烧生物质的影响,对300 MW电站煤粉锅炉耦合掺烧生物质进行了数值模拟,讨论了生物质掺烧比例和送粉温度对炉内参数的影响规律。结果表明,随着生物质掺烧比例增加,炉膛内氧气消耗量下降,CO及焦炭浓度降低,而NOx排放因生物质中N元素高而有所增加。降低生物质送粉温度在一定程度上导致主燃区O2体积分数升高,CO体积分数降低,对于炉膛内部各参数的影响总体不显著,因此在生物质混烧的工程中可以适当降低送粉温度而不对炉内燃烧的稳定性造成较大影响。  相似文献   

14.
双锥煤粉燃烧室在小容量工业锅炉中广泛采用水冷却方式,但随着市场对高容量锅炉需求的增加,双锥燃烧室体积增大、数量增多,如仍采用水冷却的方式将导致安装困难、水系统复杂等问题,亟需开发新的冷却方式。空气冷却形式具有结构简单、预热后的空气可以增加煤粉的着火稳定性等优点,需要考察其首次应用于双锥煤粉燃烧室中的效果。为了确定空气冷却式燃烧室燃烧和壁面冷却情况,采用数值模拟技术对14 MW工业锅炉燃烧室和炉膛进行三维建模,得到50%和100%两种负荷下不同内外二次风配风比例下燃烧室内部燃烧情况、金属壁面温度、出口火焰形状和炉膛充满度。结果表明:控制总空气过量系数不变,随着内二次风比例的逐渐增加,燃烧室内的平均温度逐渐降低;50%负荷下金属壁面温度随二次风比例的增加逐渐降低,100%负荷下金属壁面温度先降低后升高,这是内二次风助燃燃烧和外二次风的冷却共同作用的结果。随着内二次风比例的增加,金属壁面的高温区域逐渐后移,集中于后锥出口区域;在50%负荷下内二次风量占总空气量比例为0.4时,金属壁面具有最高温度930 K,100%负荷下内二次风量占总空气量比例为0.2时,壁面金属最高温度835K,2个最高温度均出现在后锥收缩段,据最高温度推荐壁面材料选取0Cr18Ni9,2种负荷下最高温度出现时燃烧室内的内二次风配风量为2 600 Nm3/h,应尽量使内二次风远离此配风量;50%负荷下燃烧室平均温度、金属壁面平均温度及最高温度均高于100%负荷,是空气冷却结构需要重点考察的工况。随着内二次风比例的逐渐增加,火焰长度先增加后减小,当内二次风过小时,出口气速较小,外二次风具有向中心的速度分量,火焰主要集中在炉膛前部。随着内二次风比例的增加,出口速度增大,火焰变长变细。但随着比例的继续增加,外二次风的轴向速度变小,出口火焰的旋流强度完全由二次风决定,出口旋流强度的增大导致了火焰的变短变粗,在2种负荷下,火焰长度较长时,内二次风比例为0.4~0.5。内外二次风比例为0.5∶0.5时,燃烧室内燃烧情况和壁面温度均匀稳定,火焰在炉膛内的充满度最好,是2个考察负荷下均较适合的运行参数。  相似文献   

15.
在滴管炉上研究不同煤种(褐煤、烟煤、贫煤和无烟煤)与生物质(稻壳)混燃NO_x的排放特性,分析不同燃烧气氛、生物质掺混比例和氧气体积分数对混燃NO_x排放特性的影响.结果表明:在20%O_2/80%N_2气氛下,不同煤种和生物质混燃时,NO_x沿程分布均呈现出先增大后减小的变化趋势,烟煤/稻壳的NO_x排放量最高;在氧气体积分数为20%条件下,O_2/CO_2气氛比O_2/N_2气氛下NO_x的排放量降低;在30%O_2/70%CO_2气氛下,随着混燃中生物质掺混比例的增加,不同煤种NO_x的排放量逐渐降低,褐煤的NO_x排放量下降最显著,由130.029mg/m~3下降到49.674mg/m~3;在O_2/CO_2气氛下,随着氧气体积分数的升高,NO_x排放量增加.氧气体积分数由20%升高到30%,烟煤单燃时NO_x排放的增加量较小,生物质和烟煤混燃时NO_x排放的增加量较大.  相似文献   

16.
为分析煤粉炉掺烧生物质气对耦合锅炉运行性能的影响,基于660 MWe燃煤锅炉和30 t/h生物质气化炉,搭建生物质气化耦合燃煤锅炉系统模型。在额定工况下,选取松木、木屑、污泥3种生物质,研究气化过程;并将最佳气化条件下得到的生物质气引入锅炉进行混合燃烧,研究不同生物质气对锅炉运行及燃烧产物的影响规律。结果表明,生物质气化热效率在最佳空燃比下均可达90%以上。与纯煤燃烧工况相比,耦合工况的炉膛燃烧温度均有所下降,最高下降9.43℃;生物质气掺烧使锅炉效率略下降,而耦合系统的生物质利用效率均可达84%以上;且耦合燃烧减少了CO2排放量,其中松木气掺烧时CO2减排量最大,为2.62×105 t/a。耦合系统中NOx生成量与炉膛燃烧温度和生物质气中CH4含量明显相关,其中木屑气耦合燃烧生成的NOx质量浓度下降最多,为167.16 mg/m3;而SOx生成与生物质成分密切相关,其中松木气耦合燃烧生成的SOx  相似文献   

17.
为考察兰炭在电站煤粉锅炉上的适应性,确定兰炭在煤粉锅炉上的掺烧比例和方式,在充分掌握兰炭燃料特性基础上,在国内首次进行了配中速磨制粉系统的电站煤粉锅炉掺烧兰炭试验。试验结果表明,电站锅炉燃用兰炭具有减轻燃烧器喷口结渣、大幅降低烟气污染物生成量、对低热值煤具有较好替代作用等优势,试验锅炉可以预混掺烧方式实现安全稳定燃用33%比例的兰炭。针对兰炭的强磨损、低燃尽特性对制粉系统以及锅炉安全经济运行可能产生的不利影响,提出了"预混+防磨+燃烧调整"的燃用兰炭原则。  相似文献   

18.
为了研究燃煤炉膛内辐射传热效率,达到节约能源,降低污染物排放的目的,提出一种大型炉膛内辐射熵产及辐射火用的试验测量方法,并应用于一台200 MW发电机组的670 t/h燃煤锅炉上。通过在锅炉上安装CCD相机获取炉内辐射图像,基于辐射反问题求解方法重建炉膛底部、燃烧器区域及炉膛出口3个截面的炉内温度分布及辐射特性,进而获得炉内煤粉燃烧介质和水冷壁的辐射熵产、辐射熵产数及辐射火用,并分析了炉内温度分布的均匀性及壁面辐射热流对燃煤锅炉内辐射熵产和辐射火用的影响。结果表明,随着燃煤锅炉内温度分布均方差增大,煤粉燃烧介质吸收、发射及散射过程的不可逆性增大,辐射传热效率越低,燃烧介质产生的辐射熵产从419 W/K增至629 W/K,辐射熵产数从0.048增至0.067;随着水冷壁面热流增大,水冷壁面辐射传热过程的不可逆性增大,辐射传热效率降低,水冷壁产生的辐射熵产从1.566 k W/K增至4.575 kW/K,辐射熵产数从0.258增大至0.346;在燃煤锅炉的燃烧器区域,由于燃烧温度相对最高,其辐射换热过程相对最剧烈,有用功相对最多,因而辐射火用相对最大;而对于温度相对最低的炉膛出口区域,其辐射换热过程相对最弱,有用功相对最少,因而辐射火用相对最小。由此可见,对于实际炉膛而言,提高炉膛内温度场的均匀性,尤其是提高炉膛燃烧器区域内温度场的均匀性,对于提高燃煤炉膛辐射传热效率具有重要的意义。  相似文献   

19.
为了掌握固体回收燃料(Solid Recovered Fuel, SRF)掺烧对污泥焚烧处置的热反应特性及烟气环境特性的影响,通过使用德国耐驰公司生产的热综合分析仪、SEM、XRD和GA-21plus烟气分析仪着重解析了不同掺烧比例时SRF与污泥混燃过程的热重规律、综合燃尽特征指数、结渣特性和烟气中NOx排放特性。结果表明:混烧过程存在明显的多峰失重现象,主要集中在192.3~645.3℃;SRF掺烧提高了燃料的失重速率,掺混比11%时,最大失重速率达0.14%/min,显著高于污泥单独焚烧的失重速率。随着SRF掺烧比提高,燃料的着火温度和燃尽温度降低,充分燃烧阶段向低温区域偏移。SRF掺混比为11%时,稳定燃烧性能指数和综合燃烧性能指数分别提升了1.38倍和1.17倍,改善了污泥单独焚烧时的着火特性。另外,SRF掺混后燃料灰熔融温度升高,灰分黏附程度降低,颗粒聚团强度降低,从而减弱了污泥单独焚烧时结渣情况,然而掺混燃烧导致烟气中NOx排放量增加。  相似文献   

20.
生物质与煤共燃研究(Ⅱ)燃烧性质分析   总被引:11,自引:4,他引:11  
对低温热解生物质和煤共燃的燃烧性质进行了研究。在热解温度300℃,热解时间30min下对三种生物质(锯屑、谷壳和花生壳)的热解产品、长焰煤、无烟煤、热解锯屑和长焰煤混样(1:10)、热解锯屑和无烟煤混样(1:10)七个样品的燃烧热重分析发现:热解生物质的燃烧性能相近,组成结构相似,主要分为挥发分释放燃烧阶段和焦炭燃烧阶段,分别位于30℃-400℃和400℃-500℃之间,其出现分别较煤的温度低;长焰煤与热解锯屑混燃可以有效地降低着火温度,而热解锯屑与无烟煤混燃时,由于燃烧性质差异较大,是分别燃烧,不产生协同效果;热解锯屑与长焰煤、无烟煤共燃能够有效地提高煤的着火性能,在总体燃烧性能上,虽然热解锯屑明显好于长焰煤和无烟煤,但混合后对其改变不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号