首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
《高电压技术》2021,47(7):2447-2456
为应对电网故障时柔性直流输电系统受端换流站功率送出能力大幅降低,导致直流母线电压迅速升高,威胁系统安全稳定运行的问题,提出了提升电网单相接地故障时受端换流站功率送出能力的改进控制策略。首先,针对换流变压器采用不同接线组别时,电网单相接地故障对于模块化多电平换流器功率送出能力的影响进行研究;在此基础上,提出了一种模块化多电平换流器改进控制策略,通过抑制零序电流来提高模块化多电平换流器的功率送出能力;最后,基于PSCAD/EMTDC仿真平台构建了风电场柔性直流并网模型并进行了仿真研究。研究结果表明:将所提出的改进控制策略应用于采用Y_0/Y_0接线组别变压器的模块化多电平换流器,可有效提升其功率送出能力,从而大幅降低耗能电阻的容量需求,减少工程建设成本。研究结果验证了所提控制策略的有效性。  相似文献   

2.
在基于模块化多电平换流器(MMC)的电压源换流器-柔性直流配电网(VSC-MVDC)换流站中,联接变压器是占地面积和造价仅次于换流阀的一次设备。取消VSC-MVDC换流站的联接变压器,可有效降低换流站占地面积,减小项目投资,还可降低系统损耗,减少维护和服务,提高系统经济性和实用性。但针对消弧线圈接地和电阻接地系统,无联接VSC-MVDC在发生接地故障时,会产生零序电流,并且可穿过直流侧流入对侧交流系统。零序电流若不进行抑制,会导致一次设备的电流应力增加,严重时可影响系统稳定性。此处针对该工况,提出了一种附加的零序电流抑制控制器,可有效抑制故障时零序电流,增强无联接变压器的MMC换流站的故障穿越能力。通过RTDS仿真验证了所述零序电流抑制控制器的有效性。  相似文献   

3.
随着电压源型换流器的发展,多端柔性直流输电技术受到了越来越多的关注。提出一种适用于多端柔性直流输电系统的新型直流电压控制策略。该策略通过在直流电压斜率控制中引入一个公共直流参考电压,作为多点直流电压控制换流站的电压反馈控制信号。最后,在PSCAD/EMTDC中建立基于模块化多电平换流器的4端柔性直流输电仿真模型,对所提出直流电压控制策略的特性进行稳态和暂态仿真验证。仿真结果表明:利用所提出的直流电压控制策略,多端柔性直流输电系统能够稳定、可靠地运行。  相似文献   

4.
模块化多电平换流器(modular multilevel converter,MMC)型直流输电技术是近年来新能源集中送出和远距离异步联网较好的解决方案。负荷变化通过直流电网对交流系统产生的频率响应是一个重点研究课题。研究了基于模块化多电平换流器的多端柔性直流输电(modular multilevel converter based multi-terminal high voltage direct current,MMC-MTDC)系统的协调控制策略,通过交流电网的频率下垂控制和MMC换流站的直流电压下垂控制实现瞬时功率的平衡。通过引入换流站附加频率控制策略,使某个换流站交流系统出现负荷-频率变化时其他交流系统可以通过直流电网参与功率和频率调整,并进行理论推导频率响应关系,得出频率响应矩阵。在PSCADX4/EMTDC仿真软件搭建四端直流电网模型进行验证,结果表明控制策略的有效性与频率响应分析的可行性。  相似文献   

5.
基于模块化多电平换流器的多端高压直流输电(modular multilevel converter based multi-terminal high voltage direct current,MMC-MTDC)系统中各个换流站的控制对整个系统电压和功率的稳定是至关重要的。基于电压与功率的关系进行设计的传统下垂控制器无法实现受端换流站之间的功率分配。针对这一问题,提出了一种基于电压下垂特性的多端组网协调控制策略。对MMC型换流站数学模型进行了详细地分析并根据多端直流组网结构的特点,推导出各换流站之间电压和电流关系。基于换流站U-I特性曲线,设计了电压外环控制器,通过改变U-I特性曲线的斜率即可实现换流站之间的功率分配。在PSCAD/EMTDC仿真平台上搭建了四端模型,仿真结果显示,通过调整U-I特性曲线斜率即可实现受端换流站功率按既定要求分配,验证了该控制策略的正确性和有效性。  相似文献   

6.
为解决传统牵引供电系统中存在的电能质量和过分相问题,介绍了一种基于模块化多电平换流器的多端柔性直流输电系统(MMC-MTDC)的新型牵引供电系统。分析了新型牵引供电系统中出现的直流电压、电流二倍频波动问题,主要有两方面原因:一是受端单相H桥型模块化多电平换流器(SPH-MMC)正常工作时内部环流将流入直流侧引起直流电压、电流二倍频波动;二是送端三相MMC因电网电压不平衡时桥臂中存在的零序电压分量造成直流电压、电流二倍频波动。为此,对于SPHMMC基于准比例谐振控制器和二阶广义积分器设计环流抑制控制器;对于三相MMC设计无需锁相环和无需电流正、负序分解的电网不对称故障控制器,利用电压补偿技术设计直流侧二倍频波动抑制器。最后,以三端单相-三相MMC-MTDC仿真模型为例验证该文的分析结果和所提出的控制策略。  相似文献   

7.
模块化多电平换流器分极控制策略   总被引:1,自引:0,他引:1  
现有模块化多电平换流器(MMC)主流控制为基于dq旋转坐标系的直接电流控制方式,该控制将MMC的上、下桥臂施行对称统一的控制,导致换流器直流侧必须严格对称运行,对此文中提出了MMC完整的换流站级分极控制策略,在保证联结变压器二次侧无直流偏置的前提下,有效地改善了MMC直流侧不对称运行时的运行特性。通过对MMC交流侧与直流侧间的功率传递关系的推导,设计了一种基于直接电流控制思路的MMC分极控制策略,该控制策略可以灵活、独立地控制上、下桥臂分别输出的有功功率和无功功率,兼具一定的环流抑制效果;提出电压偏置率定义,通过对控制指令的修正与配合,可以在一定换流器结构下实现联结变压器二次侧无直流偏置的前提下MMC-HVDC系统直流侧的不对称运行,且同时可以明显降低直流侧不对称故障时直流母线的过电压水平;最后基于PSCAD/EMTDC搭建了两端11电平MMC-HVDC系统模型,仿真结果验证了所设计分极控制策略的正确性,以及对于桥臂环流的抑制效果、对于直流侧不对称运行特性改善的有效性。  相似文献   

8.
为实现基于电网换相换流器与模块化多电平换流器(LCC-MMC)的混合三端直流输电系统送端交流故障下的直流低电压穿越,提出兼顾传输容量与响应速度的自适应电压协调控制策略及有功功率分配策略。在维持故障期间功率续传的前提下,定量分析了模块化多电平换流器(MMC)的降压值以减少传输功率的绝对值损失量,并设计MMC根据本地直流电流偏差快速减投子模块总数的降压方式;考虑到半桥型MMC的调制比约束,设计正极MMC定量吸收无功功率与负极MMC动态调整交流电压参考值的换流站极间协同控制策略;同时,为抑制从站的过电流及避免送端严重交流故障时主站的潮流反转,提出各受端换流站有功功率自适应调整的控制方式。最后通过对输电系统送端交流电压跌落不同幅度时的故障穿越效果进行仿真分析,验证了所提控制策略的有效性。  相似文献   

9.
基于模块化多电平换流器(MMC)的直流内电势直接控制方法提出了一种新型的MMC多端直流输电系统下垂控制策略。该控制策略在直流电压控制站实现直流内电势-直流电流的下垂特性,并在功率控制站实现对直流电流和电容电压的闭环控制。基于对频域响应特性的分析给出了该控制策略的优化控制参数设计方法。仿真证明了所提控制策略的可行性和有效性。  相似文献   

10.
唐庚  徐政  薛英林  顾益磊  裘鹏 《高电压技术》2013,(11):2773-2782
为了设计并搭建基于模块化多电平换流器的多端柔性直流输电(MMC-MTDC)控制系统。首先分析了模块化多电平换流器的基本原理,并基于此基本原理设计了阀组级控制器以及采用矢量控制的换流站级控制器。接着,设计了适用于MMC-MTDC的直流偏差控制器;最后,在PSCAD/EMTDC仿真软件中对所设计的控制系统进行仿真分析。仿真结果表明:控制系统实现了换流站的功率控制与交流电压控制,并且使得换流站具备了孤岛供电能力;在定直流电压换流站故障退出运行后,后备定直流电压换流站能够自动实现直流电压的偏差控制;各级控制器间的相互配合使得所构建的MMC-MTDC系统稳定、可靠地运行。  相似文献   

11.
提出了一种基于比例—积分—谐振(PIR)控制器,且适用于电流源型永磁直驱风力发电系统(CSC-DPMSG-WGS)的低电压穿越运行控制方案。根据所提出的方法,电网故障时,通过机侧变换器控制来限制风力发电机的电磁功率,以实现机侧和网侧的功率平衡;网侧控制器在正序旋转坐标系下采用PIR控制器同时对正负序电流进行无差控制,以消除两倍基频的功率波动,进而稳定直流电流。仿真与实验结果表明,所提出的控制方案在电网对称及不对称故障下均可有效降低直流电流波动,并实现电流源型永磁直驱风力发电系统的低电压穿越。  相似文献   

12.
为了应对模块化多电平(MMC)系统在三相电网不平衡条件下的运行,本文提出了一种改进型单周控制法,在基本单周控制的基础上使用网侧负序电压来补偿MMC网侧电流反馈量,避免了三相电流的正负序转换运算。同时加入虚拟循环映射方案进行子模块电容均压。本方法相比现有的MMC不平衡控制策略,简化了控制环节,参数设计较为容易。三相电压跌落仿真结果表明,本文提出的控制方法不仅能够实现MMC在三相不平衡时的单周控制,降低直流电压中两倍于基频的谐波,使电网输出的有功功率趋于稳定,而且可以使子模块电容电压自动达到均衡,减少了系统的器件损耗。  相似文献   

13.
风电系统接入基于模块化多电平换流器(MMC)的高压直流(HVDC)输电系统是极具前景的输电方案,同时也面临较为突出的系统稳定性问题。小信号阻抗分析法是研究互联系统稳定的有效办法。然而,MMC的内动态特性使得精确建立其阻抗模型具有较大难度。文中采用多谐波线性化方法建立了采用双闭环定交流电压控制的MMC送端换流站小信号阻抗模型,可实现电流环对MMC阻抗影响的准确分析。针对直驱风机通过MMC-HVDC系统并网的系统,利用阻抗分析法分别分析了MMC电流环不同控制带宽下互联系统振荡的问题,为电流环参数优化设计提供了依据。最后,基于MATLAB/Simulink的仿真结果证明了阻抗模型和稳定性分析理论的正确性。  相似文献   

14.
针对一端采用传统电网换相换流阀(line commutated converter,LCC)另一端为电压源换流阀(voltage sourced converter,VSC)的混合直流输电系统因其直流侧电抗较大,造成传统双闭环矢量控制策略中电流内环的快速性与稳定性相互矛盾、暂态扰动易造成系统功率振荡等问题,提出VSC侧换流站采用功率同步控制的方法,同时,通过增加桥臂电容储能控制环,保持三相桥臂电容电压之和基本不变,抑制系统功率和直流电压波动,减小了有功功率控制环存在欠阻尼特性的影响。最后,结合模块化多电平变流器(modular multi-level converter,MMC)应用,利用仿真软件搭建双端混合直流输电系统模型,通过仿真验证了所采用方法的正确性、有效性。  相似文献   

15.
电网电压不对称时,在基于模块化多电平换流器的高压直流输电(Modular Multilevel Converter based High Voltage Direct Current,MMC-HVDC)系统中,针对MMC交流侧输出产生的有功功率和无功功率二倍频波动问题,提出了将电网电压、电流均变换至正序dq坐标系下进行电流参考值计算的控制策略,可同时抑制MMC交流侧输出的有功功率和无功功率的二倍频波动。此外,电网电压不对称时,在正序dq坐标系下,电压d、q轴分量中除直流分量外,还将含有由负序分量引起的二倍频分量。若在锁相环的设计中不考虑此二倍频分量,则电网电压不对称时系统整体控制性能将会受到影响。据此设计了基于二倍频陷波器的频率自适应锁相环,在电网电压不对称情况下可准确锁定正序电压相位,并计算电网正序电压幅值及负序电压在正序d、q轴上的分量值,用于所提控制方法中的dq变换及功率波动抑制环节中电流参考值的计算。最后通过仿真验证了所提方法的可行性和有效性。  相似文献   

16.
为避免电网电压不对称跌落导致双馈风电机组(DFIG)脱网运行,分析了电网不对称故障时双馈风力发电机组直流母线电压波动机理,直流侧过电压这一现象主要由定子侧直流分量和电网电压负序分量引起.通过参考系坐标变换导出在正负序坐标系中双馈感应发电机的电压和电流方程,建立了正、负序坐标系下DFIG数学模型,利用机、网变流器协调控制...  相似文献   

17.
为避免电网电压跌落导致海上风电机组脱网运行,分析了直驱永磁同步海上风电系统的双PWM全功率变流器控制策略,提出了一种基于超级电容器蓄能的海上风电机组并网运行低电压穿越方案。在双向变流器的直流侧并联超级电容蓄能系统,利用超级电容来维持电网故障时的功率平衡,稳定直流侧母线电压。利用网侧变流器静止无功补偿运行模式控制无功电流输出,向电网提供无功功率支持。仿真结果表明了该方案在电网故障时,能有效抑制直流侧过电压,向电网提供无功功率,有利于电网故障恢复,提高了直驱永磁海上风电系统的低电压穿越能力。  相似文献   

18.
基于模块化多电平换流器(Modular Multilevel Converter, MMC)的柔性直流输电系统近年来受到广泛的关注。针对电网电压不平衡下MMC运行情况进行研究,提出了一种能量均衡控制策略,以改善模块化多电平变换器在不平衡网压条件下的换流器内部能量平衡。该策略通过分析桥臂能量与各电气信号耦合关系,在0?β坐标系下建立桥臂能量数学模型,前馈补偿的加入提高了MMC在交流电网不对称故障和突发电压不平衡情况下的抗干扰能力。通过优化换流器内部电流分量进行桥臂能量平衡控制,实现网压不平衡下交流侧电流与换流器内部能量协同控制。最后,通过Matlab/Simulink平台搭建了双端MMC仿真模型。仿真结果验证了所提出控制策略的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号