首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
雷茂杰  许坦奇  孟凡英 《电源技术》2021,45(8):1036-1039
最大功率点追踪(MPPT)技术的使用使得光伏组件的转换效率大幅提升,在有遮挡的情况下,光伏阵列会呈现多峰的输出曲线,传统的MPPT方法容易陷入局部最大功率点,无法追踪到全局的最大功率点.全局算法中,传统粒子群算法存在收敛速度慢、种群容易早熟、对初始条件敏感等问题,为解决这一问题,提出了一种全新的基于自适应粒子群(adaptive particle swarm optimization,APSO)算法MPPT控制策略.通过引入自适应参数算法和随机粒子加快粒子群的收敛速度,既解决了传统方法无法找寻到全局最大点、寻找速度慢的问题,又解决了传统粒子群算法随机性大、收敛速度慢、会产生较大震荡的问题.在Matlab/Simulink上搭建光伏系统模型,在固定辐照度和动态辐照度的条件下对所提算法进行仿真,结果表明:相对于传统方法和传统粒子群算法,所提出的MPPT控制策略在追踪精度、追踪速度和响应速度上均有大幅提升,能够提升光伏组件的转换效率.  相似文献   

2.
基于自适应混沌粒子群算法的光伏电池模型参数辨识   总被引:1,自引:0,他引:1  
光伏电池模型参数的快速准确辨识在光伏阵列的输出功率预测、最大功率点跟踪以及电池故障模型的特性研究方面具有非常重要的工程意义。针对大部分传统智能算法用于系统参数辨识时的辨识精确受参数初值影响较大,而且算法易陷入早熟的问题,利用自适应混沌粒子群算法(SA-CPSO)对光伏电池模型参数进行辨识。将混沌算法与粒子群算法融合,对粒子群进行混沌初始化并促使陷入局部最优的粒子进行混沌搜索,引导其跳出局部极值从而搜索到更好的解;同时引入自适应调整策略来有效控制全局与局部搜索,提高了进化后期算法的收敛精度。经过仿真和实验测试,证明SA-CPSO算法在光伏电池模型参数辨识方面具有较高的精确度和快速性。还通过实验探讨了辐照度变化对太阳能电池参数的影响。  相似文献   

3.
针对励磁控制系统中比例–积分–微分控制参数整定难的问题,提出了一种基于帐篷映射的混沌自适应权重粒子群优化算法对控制器参数进行优化,采用2级优化策略,第1级采用自适应权重粒子群优化算法执行全局搜索;第2级采用基于帐篷映射的混沌搜索对第1级的结果执行局部遍历搜索,并通过在粒子群算法中引入自适应权重及在混沌局部搜索中采用帐篷映射的方法对混沌粒子群搜索算法进行改进,解决了常规粒子群算法易陷入局部极值且在迭代后期收敛效率低的问题,在建立励磁控制系统简单模型的基础上,实现同步发电机励磁系统的参数优化控制。仿真研究表明,新方法与常规粒子群方法相比具有更好的收敛速度和精度,能有效改善励磁控制系统空载起励和孤网过渡过程的动态性能。  相似文献   

4.
局部遮蔽条件(PSC)下,传统最大功率点跟踪(MPPT)算法会陷入局部极值,智能算法追踪时间过长。针对上述问题,提出了一种基于自适应种群粒子群算法(APPSO)的MPPT控制方法,引入全局和局部粒子密度的概念,并设计了两种自适应调整的粒子种群数量的机制。对该方法与常规粒子群算法(PSO)在均匀光照和PSC下分别进行了对比。仿真和实验结果均表明,在PSC下APPSO可迅速、准确地追踪到全局最大功率点(GMPP),追踪时间仅为PSO的50%左右。  相似文献   

5.
贠武超 《电源技术》2023,(10):1351-1354
在局部阴影遮挡条件下,经典最大功率点跟踪(MPPT)算法容易失效,导致无法追踪到最大功率点,针对此问题,提出了一种基于鲸鱼粒子群融合算法的多峰MPPT控制策略。该算法实现了混合算法的优势互补,增强了鲸鱼算法后期收敛效率,且避免了粒子群算法易停滞于局部极值的缺陷,提高了鲸鱼粒子群融合算法的收敛精度和寻优效率。在MATLAB/Simulink环境中建立光伏阵列仿真模型,仿真结果表明:该算法追踪过程中震荡幅度减小,能够快速准确地搜索到最大功率点。  相似文献   

6.
局部阴影条件下,光伏发电系统中P-U曲线会呈现多峰现象,传统的最大功率点跟踪(Maximum Power Point Tracking, MPPT)算法易失效,粒子群(PSO)算法适用于复杂多极值系统的寻优,因而在多峰全局MPPT中得到应用。针对寻优过程中传统PSO算法搜索精度低以及易出现早熟现象的缺点,本文提出了自适应惯性权重粒子群(APSO)算法,在PSO算法中引入非线性惯性权重,以提高多峰全局寻优的精度与速度。最后利用MATLAB/Simulink对系统进行仿真,仿真结果表明:在均匀光照和可变阴影条件下,APSO算法能有效提高系统寻优的收敛速度与精度。  相似文献   

7.
光伏阵列在局部遮阴条件下,其P-U特性曲线呈多峰特性,传统的最大功率点跟踪(MPPT)算法容易陷入局部最优,而无法追踪到最大功率点。粒子群(PSO)算法适用于复杂多极值的寻优问题,因而在多峰值MPPT中得到广泛应用。针对粒子群算法寻优过程中易早熟收敛至局部最优、迭代后期收敛速度慢以及精度低等问题,提出了一种自适应免疫粒子群算法。该算法对惯性权重和学习因子进行自适应调整,并且与免疫算法相结合。仿真结果表明:该算法在静态局部遮阴以及动态局部遮阴条件下,均能追踪到最大功率点,并且收敛速度更快,精度更高,稳定性更好。  相似文献   

8.
针对局部阴影导致光伏系统功率输出特性曲线呈现多峰值,最大功率追踪(Maximum power point tracking,MPPT)算法存在容易陷入局部极值、输出功率振荡等问题,将收敛快速、精度高和稳定性好的蒲公英优化(Dandelionoptimization,DO)算法应用于光伏系统MPPT中。DO算法采用非线性减小的随机扰动因子α、向下凸振荡k值在MPPT初期阶段充分搜索全局区域,后期转向开发局部区域,确保输出功率稳定和精确收敛于最优功率;再结合不规则布朗运动逃避局部功率极值点,采用Levy飞行函数增强局部功率的搜索能力,最终算法收敛于全局最大功率。仿真结果表明,与灰狼算法(Grey wolf algorithm,GWO)、粒子群算法(Particle swarm algorithm,PSO)相比,DO算法具有追踪效率高、稳定性好、鲁棒性强等优点。  相似文献   

9.
基于强引导粒子群与混沌优化的电力系统无功优化   总被引:2,自引:0,他引:2  
为解决粒子群优化后期搜索速度较缓慢,易陷入局部最优的问题,提出一种基于强引导粒子群与混沌寻优相结合的电力系统无功优化算法,该算法在采用强引导型粒子群的基础上引入混沌优化以进一步提高全局寻优能力,即在粒子群算法的基础上引入强引导思想,在搜索初期,对粒子位置的更新加以引导,减少算法随机性以提高搜索效率。为进一步解决寻优后期粒子可能陷入早熟收敛的问题,利用混沌优化具有"奇异吸引子"的特性,在解空间进一步搜索,两者的结合可以更有效地搜索到全局最优解。通过对某高压配电网的具体计算,最优降损率可以达到14.04%,节点最低电压从0.895 0 p.u.提高到0.995 6 p.u.,结果表明该算法应用在电力系统无功优化领域的可行性和有效性。  相似文献   

10.
王磊  朱金荣 《电源技术》2021,45(4):482-484,511
常规最大功率点追踪(MPPT)方法在光伏阵列局部阴影时,易陷入局部最优解从而追踪失败.提出了迭代步长呈正态分布衰减的粒子群算法(SNDPSO).该算法中引入了最近邻学习过程,通过粒子相对距离的判断提高了最优解的精度,同时算法充分地将正态分布收敛速度快的优点和粒子群的全局峰值搜索能力结合起来.由仿真结果可知,SNDPSO算法在静态及动态阴影、均匀光照情况下均能实现快速精确的最大功率追踪.  相似文献   

11.
局部阴影遮挡(Partial Shading Condition,PSC)使得最大功率点追踪(Maximum Power Point Tracking,MPPT)的追踪速度和精度难以得到保证。对布谷鸟搜索算法(Cuckoo Search Algorithm,CSA)和自适应变步长的改进扰动观察法(Improved Perturbation and Observation,IP&O)进行了研究并应用到光伏的MPPT控制中。利用CSA出色的全局搜索能力快速收敛到全局最大功率点(Maximum Power Point,MPP)附近,然后利用IP&O出色的局部搜索能力快速、准确地收敛到MPP。最后设置了几种光照情况进行仿真,并用扰动观察法和粒子群(Particle Swarm Optimization,PSO)方法进行对比。通过仿真验证了所提出的方法具有更快的追踪速度和更高的精确度。  相似文献   

12.
局部阴影条件下,光伏阵列的功率特性曲线会出现多个峰值,传统的MPPT跟踪算法容易陷入局部极值点,无法准确地跟踪到最大功率点。粒子群算法具有很强的全局搜索能力,可以有效解决多峰寻优问题,但是普通粒子群算法容易出现收敛速度慢、早熟现象。提出一种改进的粒子群遗传(IPSO-GA)算法,该算法的惯性权重与学习因子随着迭代次数不断改变,可以同时兼顾算法的局部搜索与全局寻优能力,并且引进遗传算法的交叉、变异操作以增加种群多样性。仿真结果表明,改进算法在多峰最大功率跟踪过程中,具有良好的跟踪速度与寻优精度。  相似文献   

13.
This paper presents a new Particle Swarm Optimization (PSO) technique with velocity control. In the proposed method, we lead the particles from intensification to diversification by adding a random number to the velocity of the particle depending on the distance from global best position (gbest), and thereby the particles can search widely in the search space. Copyright © 2009 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

14.
配电网重构本质上是一个复杂的高维数非线性组合优化问题。为避免其不可行解的影响,同时实现快速寻优,提出了一种通过连锁环网矩阵快速判断粒子是否满足配电网拓扑约束的方法。采用基于Pareto准则的离散二进制粒子群算法(Binary Particle Swarm Optimization,BPSO)以求解配电网重构多目标优化问题。从三方面对BPSO算法进行改进:改进粒子更新策略以提升新代粒子的可行概率;改进sigmoid函数同时提出邻域搜索机制以强化算法后期的收敛能力;提出基于次优解保留策略的小生境共享机制以改进群体最优粒子更新方式,进而强化算法的全局搜索能力。对IEEE33系统算例进行仿真,结果表明改进BPSO算法在求解含分布式电源(Distributed Generation,DG)的配电网重构多目标优化问题时,能够更加精确高效地收敛至Pareto最优前沿。  相似文献   

15.
基于改进PSO算法的电力系统无功优化   总被引:22,自引:3,他引:19  
粒子群优化PSO(Particle Swarm Optimization)算法是一种简便易行、收敛快速的演化计算方法,但该算法也存在收敛精度不高,易陷入局部极值的缺点。针对这些缺点,对原算法加以改进,引入了自适应的惯性系数和变异算子,提出了一种新的改进粒子群优化MPSO(Modified Particle Swarm Optimization)算法,并将其应用于电力系统无功优化,建立了相应的优化模型。对IEEE-14节点系统及某地区70节点实际电力系统进行了仿真计算,并与PSO算法作了比较,结果表明MPSO优化算法能有效地应用于电力系统无功优化.其全局收敛性能及收敛精度均较PSO算法有了一定程度的提高。  相似文献   

16.
针对传统的最大功率点追踪(Maximum Power Point Tracking, MPPT)算法陷入局部极值不能找到最大功率点(Maximum Power Point, MPP)以及传统的蝴蝶优化算法(Butterfly Optimization Algorithm, BOA)存在收敛速度慢和搜索震荡较大等问题,提出一种改进的蝴蝶优化算法(Improved Butterfly Optimization Algorithm, IBOA)结合电导增量法(Conductance Increment Method, INC)的复合MPPT追踪方法。在IBOA中,引入自适应动态转换概率来平衡算法的全局与局部搜索,然后在全局搜索阶段引入Levy飞行策略,使蝴蝶个体广泛分布于搜索空间中,提高全局寻优能力;同时在局部搜索中设置新的寻优对象,并通过贪婪算法进行筛选保留,提高局部搜索的能力。当系统位于MPP附近时,利用INC局部搜索能力强的优点快速、准确地收敛到MPP并且稳定功率的输出。仿真结果表明,在静态和动态阴影下与BOA、PSO算法进行对比,所提算法具有更快的追踪速度、更高的追踪效率和更强的鲁棒...  相似文献   

17.
In this paper a new, an Improved Particle Swarm Optimization (IPSO) is proposed for optimizing the power system performance. Recently, the Particle Swarm Optimization (PSO) technique has been applied to solve power engineering optimization problems giving better results than classical methods. Due to slow convergence and local minima, particle swarm optimization fails to give global results. To overcome these drawbacks, in this paper presents the application of improved particle swarm optimization for optimal sizing and allocation of a Static Compensator (STATCOM) and minimize the voltage deviations at all the buses in a power system. This algorithm finds an optimal settings for present infrastructure as well as optimal locations, sizes and control settings for Static Compensator (STATCOM) units. A 30 bus system is used as an example to illustrate the technique. Results show that the Improved Particle Swarm Optimization (IPSO) is able to find the best solution with statistical significance and a high degree of convergence. The simulation results are presented to show a significant improvement of the power system reliability and feasibility and potential of this new approach.  相似文献   

18.
量子粒子群优化算法(QPSO)避免了粒子群算法(PSO)不能保证收敛到全局最优解这个缺点,认为粒子具有量子的行为,并且可以在整个可行解空间进行搜索。无功优化问题是带有离散变量的非线性、不连续、多约束、多变量的复杂优化问题。本文考虑到优化过程中避免陷入局部最优,应用含维变异QPSO算法并结合动态调整罚函数的方法来解决无功优化问题。并对标准IEEE-30节点系统进行仿真计算,并与QPSO、PSO、GA算法进行了比较,表明该算法能够获得更好的全局最优解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号