首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
席文献 《机床与液压》2024,52(9):156-160
压裂液连续混配常规采用阀前负载敏感液压系统作为其液压动力系统,由于混配施工工艺不断改良细化,在大扭矩工况下多马达复合动作,液压系统流量饱和情况下流量优先向轻载分配。为解决这一问题,优选阀后负载敏感液压系统,在流量供给不足情况下,同比减少各负载流量供给,实现马达同步动作。基于AMESim仿真软件,分别搭建连续混配设备阀前及阀后负载敏感液压系统仿真模型,得到泵与马达压力、流量及功率变化曲线。仿真结果表明:阀后负载敏感系统中,负载敏感泵输出功率始终与负载所需功率相匹配;系统流量充足时,泵输出流量始终随着系统所需流量的变化而变化;系统流量不足时,阀后负载敏感阀可以实现流量共享,各马达负载同步动作。实验结果表明:仿真与实验数据差距小于3%,阀后负载敏感系统可以按照阀口开度比例分配各路负载流量,实现各负载平稳动作。  相似文献   

2.
为了分析泵车臂架液压系统,有必要对泵车臂架液压系统的关键元件负载敏感比例多路阀进行建模与仿真分析并获取其动态特性。根据某型混凝土泵车的臂架液压系统所采用的负载敏感比例多路阀的工作原理,通过多学科领域建模、仿真、分析软件Simulation X建立了该阀的仿真模型,并对此阀进行了动态仿真。结果表明:该阀与实际运行状态一致,并且建模方法简单。  相似文献   

3.
负载敏感液压控制系统在多执行器复合工况下,液压泵容易出现流量饱和工况,使得系统的负载敏感特性较差。针对上述问题,设计一种混合型压力补偿液压控制系统,建立该系统的数学模型和AMESim仿真模型,进行理论和仿真分析。结果表明:混合型负载敏感压力补偿系统定差阀前置支路具有大流量优先特性,且液压泵出现流量饱和时,在满足流量优先的条件下,剩余流量能够按照比例进行分配,实现抗流量饱和。研究结果为负载敏感压力补偿系统的设计提供参考。  相似文献   

4.
由于挖掘机挖掘工况的不确定性,会出现泵供油不足的情况.针对这种情况,力士乐公司开发了负载独立流量分配系统.对负载独立流量分配系统中的多路阀进行了研究,建立了多路阀数学模型,并利用仿真软件MATLAB/SIMU-LINK进行了仿真.通过仿真分析了液压油通过多路阀的流量分配特性和多路阀结构参数对流量分配的影响,为多路阀的结构参数的设计提供依据.  相似文献   

5.
根据M4系列电液比例多路阀工作机制,建立了其先导阀电液比例减压阀数学模型,在Simulink平台下进行了仿真,M4多路阀的先导比例减压阀具有较好的阶跃响应特性。利用功率键合图法对M4电液比例多路阀工作系统进行了建模,分析了工作回路动态特性,分析结果显示:M4多路阀工作系统具有较好的平稳性和良好的动态响应。研究结果为在工作系统中比例多路阀的选择使用提供了依据。  相似文献   

6.
陈叙  陈奎生 《机床与液压》2019,47(14):54-57
负载独立流量分配(LUDV)因其抗流量饱和及节能广泛应用在液压挖掘机上,但因阀口开启或负载交替变换成为系统最高压力时,会产生一定的液压冲击。针对这一问题,分析LUDV控制原理,并根据LUDV系统以AMESim为平台建立模型,给定交替变化负载信号,对多路阀、补偿阀进出口压力流量特性进行仿真分析。结果表明:建立的模型是正确的;适当增加压力补偿阀弹簧刚度、适当减小补偿阀阀芯最大位移及适当扩大节流口直径可减弱液压冲击,提升系统的稳定性。  相似文献   

7.
以某型电动挖掘机LUDV液压系统为研究对象,从减小溢流损失、提高节能的角度,结合异步电机调速性良好的特点,介绍一种液压系统流量匹配方法。液压系统采用泵阀同步控制方式,预设多路阀的主阀压差为1.4 MPa,手柄信号同时控制定量泵的转速和LUDV多路阀的过流面积。提出挖掘机工作机构所需流量的数学模型,建立了液压系统AMESim仿真模型并进行仿真分析。仿真结果表明:当挖掘机执行机构单一或者复合动作时,泵的输出流量为期望值,泵的出口压力比最高负载传感压力高1.4 MPa;当系统流量饱和时,主阀压差减小,各执行机构流量按需求流量成比例分配而不发生干涉。  相似文献   

8.
刘伟 《机床与液压》2020,48(2):45-48
负载敏感液压系统中,为防止多路阀处于中位时LS反馈油路困油导致系统憋压,通常需对多路阀处于中位时的LS反馈油路进行回油卸荷。分析4种不同负载敏感多路阀及系统LS中位卸荷油路的工作原理及特性。并以起重机卷扬起升系统为研究对象,理论分析了LS反馈油路为固定阻尼孔卸荷形式的多路阀负载敏感系统流量和压力特性,并进行了仿真和试验验证。  相似文献   

9.
木墩机粉碎系统工作时由于负载变化频繁,常会出现液压马达输出动力不足导致粉碎鼓卡死等现象。设计了以负载敏感变量柱塞泵为核心元件的液压粉碎系统。在深入分析木墩机粉碎系统不同工况基础上,在AMESim平台下建立了基于负载敏感控制的木墩机粉碎系统仿真模型,并对其进行了静动态仿真。仿真结果表明:通过调节负载敏感阀和恒压阀的弹簧刚度可以缩短系统响应时间,实现系统优化;负载敏感粉碎系统输入执行元件的流量只与换向阀阀口的开度有关,与外界的压力(负载)大小无关。负载敏感粉碎系统能够实现木墩机节能降耗,提高整机的工作可靠性。  相似文献   

10.
常映辉  周杰 《机床与液压》2022,50(10):129-132
矿用设备系统主要采用负载敏感系统来实现液压系统的节能,负载敏感系统中多路阀是主要的控制元件,在每一联多路阀处一般都配置压力补偿阀,而根据压力补偿阀在系统中的位置可分为前置补偿和后置补偿。分析现有前置压力补偿多路阀的特性,提出一种不使用调压弹簧的前置压力补偿技术,在保证前置补偿的基本功能的同时,具备流量抗饱和特性。  相似文献   

11.
柳玉龙 《机床与液压》2017,45(22):93-96
为能更好地研究和应用负载敏感变量泵,分析负载敏感变量泵工作原理,在建立其数学模型的基础上,运用AMESim仿真软件对负载敏感变量泵进行建模和仿真。结果表明:仿真结果与实际工作特性一致,验证了模型的准确性;泵出差压力与负载压力的差值和LS阀弹簧调定保持一致,输出流量与负载流量需求匹配,具有良好的节能效果;适当增大LS弹簧刚度有利于负载敏感泵的平稳性能;在LS阀与恒压阀左右控制油口设置阻尼孔可以有效提高泵的平稳性和动态响应。  相似文献   

12.
针对多执行机构负载敏感液压系统回路之间的耦合干扰现象,分析引起负载敏感液压系统压力冲击和耦合干扰的原因,指出工作回路流量控制阀关闭时,变量泵排量调节的响应延迟,导致泵的出口流量大于通过流量控制阀的流量,使液压泵出口处产生压力冲击,并造成剩余回路流量波动。基于AMESim软件建立多执行机构负载敏感液压系统仿真模型,对比分析在泵出口处设置防冲击回路对于抑制压力冲击从而解决回路之间耦合干扰的作用。结果表明:防冲击回路可以显著降低多执行机构负载敏感液压系统回路之间的耦合干扰。  相似文献   

13.
为深入研究负载敏感变量泵的动态特性,分析了负载敏感变量泵的恒功率、负载敏感和压力切断控制原理,采用Sim Hydraulics软件建立了负载敏感变量泵的图形化仿真模型,仿真分析了负载敏感阀开口面积和变量泵的最大排量对系统动态特性的影响。  相似文献   

14.
杨敬  都佳  李骞飞 《机床与液压》2020,48(17):64-69
目前,起重机普遍使用的传统抗流量饱和负载敏感液压系统存在响应速度慢、速度精度差、能耗大的缺点。为克服这些缺点,建立以电子压力补偿原理为基础的起重机双阀芯泵阀协同压力流量复合控制液压系统。对起重机典型负载原理进行分析,提出一种以手柄开度信号为阈值的多模式控制策略。建立传统抗流量饱和负载敏感液压系统AMESim仿真模型,并通过试验验证了仿真模型的正确性。建立起重机双阀芯泵阀协同压力流量复合控制液压系统AMESim仿真模型。仿真结果表明:与传统抗流量饱和负载敏感系统相比,双阀芯泵阀协同压力流量复合控制液压系统在变幅油缸单动作微动模式下使用主阀和小流量伺服阀速度精度更高,速度跟踪误差分别降低26.2%和56.5%,卷扬马达单动作微动模式下使用主阀和小流量伺服阀速度跟踪误差分别降低46.1%和69.8%。  相似文献   

15.
符爱红 《机床与液压》2016,44(8):99-102
针对全液压六臂伞钻能量损失较大的问题,设计了负载敏感液压操控系统,并建立了全液压伞钻负载敏感系统AMESim仿真模型,仿真验证了系统的负载敏感性能以及回转回路的调速性能,结果说明:负载敏感回路中流量与控制阀开口量相关;在多个负载同时工作时,系统压力和流量均为负载敏感阀所调定的压力和流量,验证了液压系统设计与参数设置的合理性。  相似文献   

16.
针对粉末压机压制频次高、能耗高、液压系统发热严重等问题,提出采用伺服泵组、大通径伺服阀及压力补偿等环节实现2.8 MN粉末压机液压系统的节能控制。利用AMESim软件搭建比例流量插装阀和伺服阀仿真模型,通过仿真验证模型的正确性;搭建2.8 MN粉末压机液压系统仿真模型,研究伺服泵组节能控制、伺服阀及压力补偿控制对液压系统功耗的影响。结果表明:采用伺服泵组节能控制可以有效降低压机待机阶段的液压系统功耗;采用伺服阀及压力补偿控制可实现压机工作阶段泵出口压力随负载变化而变化,有效降低泵出口压力和液压系统功耗。  相似文献   

17.
针对掘进机液压系统平衡阀参数设置对掘进机升降运动的稳定性有重要影响的现状,利用AMESim建立了截割部升降运动液压回路负载敏感泵、比例多路阀、平衡阀、截割部升降运动机构仿真模型。采用AMESim优化分析工具,将平衡阀开启压力作为输入参数,将与截割部运动相关的液压缸运动速度和流量作为输出参数,定义最小速度、稳态速度波动、流量误差为复合输出参数,通过设计优化方法得到了最佳平衡阀开启压力设定值。  相似文献   

18.
王刚  陶柳 《机床与液压》2021,49(22):164-168
阀后补偿负载敏感液压系统中关键元件压力补偿阀通过阀前后补偿压差来调节流量,因而会造成一定的能量损失,降低系统效率的同时元件使用性能及寿命也大大降低。鉴于此,提出一种以串联液阻分压来降低补偿压差的节能阀后补偿负载敏感液压系统。利用AMESim仿真软件建立仿真模型并进行仿真分析。结果表明:在相同的工况下,改进后的负载敏感系统,能够降低工作时压力补偿阀的能量损耗,提高系统及元件的性能及使用寿命。所得结论为阀后补偿负载敏感液压系统的优化设计提供了参考。  相似文献   

19.
针对传统液压助力转向系统的压力和流量损失问题,设计了基于负载敏感技术的液压助力转向系统。基于仿真软件AMESim对负载敏感泵和液压助力转向系统进行了建模。仿真结果表明:当在直线行驶工况下,该系统以低压、小流量的待机状态输出;当有转向需求时,系统能根据转阀开启阀度,快速调节泵出口的压力和流量,并且能够满足助力需求。基于负载敏感技术的液压助力转向系统在车辆行驶过程中能减小能量消耗,达到节能的目的。  相似文献   

20.
赵燕  韩家威  张笑 《机床与液压》2017,45(20):89-92
针对负载敏感液压系统在快操作时出现压力冲击的问题,以汽车起重机卷扬系统为载体进行防冲击技术研究。采用AMESim软件建立负载敏感液压系统的仿真模型,结合实验数据对仿真模型进行优化。通过仿真分析,找出导致压力冲击的根源。在此基础上,对液压系统进行优化设计。仿真结果和整机测试数据均表明:采用三通流量阀原理的防冲击阀,能有效降低液压系统压力冲击幅值,防冲击效果显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号