首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
级联晶体能有效扩展倍频器件的温度适用范围。在考虑空气色散的基础上推导出了级联晶体倍频过程中的能量转换效率公式。根据该公式,通过仿真计算出了级联两KTiOPO_4晶体倍频1064nm激光时转换效率随温度变化的特性,并进行了实验验证。实验结果表明:级联晶体中倍频光能量随晶体间距呈余弦分布,空气色散引起的相位失配量为2π的整数倍时,级联晶体的倍频温度特性最佳,最大转换效率可达47.9%,比单个KTP晶体倍频时的最高效率高12.9%,温度半宽度可达78℃,是单个KTP晶体倍频温度半宽度的两倍。提出的理论分析能合理解释级联晶体倍频过程中的实验现象,有助于提高倍频激光的温度稳定性。  相似文献   

2.
超高强度飞秒脉冲的三次谐波转换   总被引:3,自引:0,他引:3  
李琨  张彬  李恪宇  朱启华  黄小军 《中国激光》2006,33(11):506-1511
针对超高强度飞秒激光,对利用单块BBO晶体产生三倍频(THG)的过程进行了分析,比较了单块晶体中三阶非线性效应以及级联二阶非线性效应对三倍频转换效率的作用,讨论了入射基频光光强、晶体厚度、自相位调制(SPM)、交叉相位调制(XPM)、群速度失配、失谐角、方位角等因素对三倍频光转换效率、时间波形及光谱分布的影响,在此基础上,提出了提高三倍频转换效率的方法.研究结果表明:入射基频光强一定时,三倍频光的峰值光强、脉冲宽度(FWHM)随晶体厚度变化不明显.通过优化基频光入射角度,可提高单块BBO晶体三倍频光转换效率及峰值光强,并减小三倍频光脉冲宽度.此外,方位角的优化也可在一定程度上提高三倍频转换效率.  相似文献   

3.
由于群速度失配的影响,飞秒光脉冲在感应到FONPS(级联五阶非线性相移)的同时,将不可避免地发生脉冲畸变.通过理论分析及数值模拟,提出了使级联五阶非线性过程运行在较大相位失配条件下的解决方案,成功地消除了脉冲畸变.并且借助于该过程中倍频效率的提高,有效地补偿由于相位失配量的增大所造成的FONPS的下降,实现飞秒基频光脉冲在感应到大的FONPS的同时无脉冲畸变发生.  相似文献   

4.
针对纳秒量级调Q宽频带光纤激光器,分别模拟了利用光栅角色散补偿(ASD),棱镜ASD以及晶体级联方法对倍频效率的影响。采用LBO晶体Ⅰ类相位匹配,通过数值求解高斯光束三波耦合方程,得到了入射基频光线宽、聚焦光斑位置、聚焦光斑大小以及晶体长度对倍频转换效率的影响,并对晶体参数进行优化。计算结果显示:直接倍频时,对于5 nm宽频带激光,倍频效率只有17%;采用光栅角色散补偿可以在大光谱范围内倍频效率达到70%以上;棱镜提供的补偿较小,但也能使倍频效率提高50%;三块晶体级联可以使倍频效率提高130%。  相似文献   

5.
李琨  张彬  刁煦  李恪宇 《中国激光》2008,35(7):976-981
针对脉冲宽度100 fs,带宽25 nm,能量6 mJ左右的超短脉冲基频光(经过透镜缩束后峰值光强为200~900 GW/cm2),采用单块厚度为1.5 mm的BBO晶体进行了三倍频实验研究。在入射基频光强度约300 GW/cm2时,得到的三倍频转换效率约0.8%。采用分步傅里叶变换及四阶龙格-库塔算法,对描述飞秒脉冲单块晶体三倍频的耦合波方程组进行了数值计算。研究结果表明,三倍频光主要是由三阶非线性效应产生的;基频光带宽较大是限制三倍频转换效率的主要因素之一;对基频光的入射角度及方位角进行优化,可较好地补偿非线性相位失配,提高单块晶体三倍频转换效率。  相似文献   

6.
中心波长为800 nm、脉宽为60 fs、重复频率为10 Hz的飞秒激光分为强弱两束,能量较强一束经I类相位匹配的BBO晶体倍频,之后与另一束光非共线和频得到三次谐波输出.实验得出基频和倍频光能量达到最佳配比时,三次谐波的转换效率最大;系统输出激光携带一定负啁啾可以补偿色散,提高三次谐波的转换效率.最终,当基频和倍频光的能量分别为2.38 mJ和0.588 mJ,系统输出激光带有9.66×10<'3> fs<'2>的负啁啾时,得到了中心波长为267 nm、单脉冲能量为230μJ的三次谐波输出,其转换效率高达19%.  相似文献   

7.
85W高稳定全固态绿光激光器的研究   总被引:7,自引:3,他引:4  
研究了平均功率达 85W高功率高稳定性全固态绿光激光器 ,从理论上分析了全固态内腔倍频晶体热效应相位失配对输出功率的影响 ;数值模拟了倍频晶体内部的热量分布 ,计算了倍频晶体相位匹配角随温度变化的失配量。在实验中 ,采用 80个 2 0W的高功率半导体激光器侧面抽运单Nd∶YAG棒 ,采用双声光Q开关、高效平凹谐振腔结构 ,对大尺寸KTP晶体进行角度偏离法补偿相位失配并配合强冷却等技术 ,实现高功率内腔倍频激光器的稳定运转 ;在抽运电流为 17 3A时 ,实现了重复频率为 2 0 4kHz,脉冲宽度 2 30ns,输出功率为 85W的高功率、高重复频率绿光 ( 5 32nm)输出 ,不稳定性为± 1 0 3% ,光 光转换效率为 9 7%。  相似文献   

8.
利用两块Ⅰ类KDP倍频晶体级联的方式,研究了时间相位调制宽带激光的二倍频特性.实验获得了二倍频转换效率与入射基频光功率密度的关系,在基频光功率密度为1.6 GW/cm2时,最大二倍频转换效率达70%,接近理论模拟的结果.实验结果表明,在高功率密度和低功率密度基频光条件下,倍频光光谱宽度约为入射基频光带宽的一半,与理论计...  相似文献   

9.
张邦星  王定华 《中国激光》1983,10(6):339-342
研究了AgGaS_2晶体对TEA CO_2 10.6微米激光的倍频特性。晶体厚度4.3毫米时倍频转换效率为0.122%。实测相位匹配角71.5%,调节宽度8°±1°。实验结果与理论计算值非常一致。  相似文献   

10.
比较分析了MgO:LiNbO3(MLN)与KTiOAsO4(KTA)晶体中超短中红外光参量放大的角度调谐、有效非线性系数、群速度失配、晶体长度以及参量放大的转换效率等。结果表明,MgO:LiNbO3晶体的有效非线性系数较大,可用非共线相位匹配方式补偿三波群速度失配,在一定泵浦光强下有利于转换效率的提高。而KTA晶体的有效非线性系数较小,群速度失配严重且不能用非共线相位匹配方式补偿,达到饱和放大所需要的泵浦光功率密度高。在超短中红外光参量放大上,MgO:LiNbO3晶体具有较优的参量耦合性能。  相似文献   

11.
戴厚梅  白晋涛 《激光技术》2008,32(3):312-313
为了得到一台大功率连续波绿光激光器,采用9个20W的高功率半导体激光器侧面抽运Nd:YAG棒,倍频晶体选用Ⅱ类相位匹配的KTP晶体,设计了三镜折叠腔结构,使得放置倍频晶体位置处基频光的光腰稍大,从而尽量避免KTP晶体的"灰线效应",通过调节角度的办法来补偿倍频晶体热效应导致的相位失配,得到在抽运电流为19.5A时,连续波绿光输出可达16W,倍频转换效率为40%的结果。实验结果表明,Nd:YAG/KTP是产生大功率连续绿光的较佳组合。  相似文献   

12.
梯度补偿法控温晶体的高功率绿光激光器   总被引:3,自引:2,他引:3  
研究了平均功率超过30W的稳定高效全固态绿光激光器,分析得出影响全固态腔内倍频激光器倍频效率和输出稳定性的主要因素是倍频晶体局部温升造成的相位失配和热透镜效应,采用温度梯度补偿控温法对大尺寸倍频晶体进行温度控制,降低激光器工作中倍频晶体内外温度梯度从而有效地克服因晶体局部温升造成的倍频相位匹配角失配和热透镜效应。采用三条60W的半导体激光二极管阵列板条侧面抽运Nd:YAG激光增益介质棒,采用声光调Q,平凹直腔和腔内倍频结构配合温度梯度补偿控温法对大尺寸倍频晶体进行温度控制,得到了稳定高效的532nm绿光输出。在抽运电流25A,抽运功率174.6W时,得到了脉冲宽度110ns,重复频率10kHz,输出平均功率31.6W稳定高效的绿光输出,光-光转换效率为18.1%,功率稳定性为±0.66%,绿光输出光束质量因子M2=4.3。  相似文献   

13.
折返点匹配的宽带二倍频实验研究   总被引:2,自引:0,他引:2  
在二次谐波转换中,基频光和倍频光的群速失配是限制转换带宽的主要因素。利用折返点匹配的宽带谐波转换技术能同时实现基频光和倍频光的相位匹配和群速匹配,理论计算表明在折返点匹配的情况下,倍频转换带宽将显著增加。分别利用厚度10 mm,氘含量12%的KD*P晶体和厚度12 mm的KDP晶体对中心波长为1053 nm,谱宽为31 nm,能量为620μJ的基频光进行折返点匹配二倍频和传统二倍频的对比实验,前者取得了22 nm的转换带宽,远大于后者7 nm的转换带宽。实验结果证实了理论计算的正确性,显示了折返点匹配宽带谐波转换技术的优越性。相应地,前者转换效率为25%,大于后者20%的转换效率,导致倍频转换效率较低的主要因素是入射基频光的光束质量和光谱质量较差。  相似文献   

14.
本文对倍频藕合波方程作二阶近似到位相失配△K的二次幂.由倍频藕合波方程直接讨论激光功率密度P、晶体长度L和相位失配△K对倍频转换效率η的影响.倍频藕合波方程中的位相失配项为AΔK~2L~2E_1E_2和-A′ΔK~2L~2E_1~2.A′和A是常数,E_1和E_2是电场振幅.位相失配项越大,倍频反向转换越强.随着L和P的增加,由于位相失配项周期性变化,倍频转换效率周期性变化.P或L越大,ΔK对η影响越灵敏。当  相似文献   

15.
自从砷酸二氢铷(RDA)晶体实现红宝石激光倍频以来,有不少研究者已研究了这种晶体的线性和非线性光学特性。这种晶体的特点是非线性光学常数大和有利的折射率色散,这样非常有利于高功率激光的频率变换。本文报导高功率Nd:YAG激光在RDA中频率变换的实验研究。在实验中采用长14.8毫米RDA晶体,以45°z50°y切割,获得Nd:YAG激光近垂直入射倍频的I型相位匹配。用日立公司的  相似文献   

16.
报道了利用激光二极管端面抽运Nd∶YAG晶体,通过LBO非线性晶体腔内倍频实现的561nm激光输出。LBO晶体尺寸为2mm×2mm×10mm,采用Ⅰ类相位匹配切割。抽运功率为5W时,561nm的最大输出功率为123mW,此时的光-光转换效率为2.46%。实验中发现激光器很容易同时出现556nm及558nm倍频光。从非线性转换效率对基频光振荡的影响角度出发,分析了1112nm与1116nm谱线起振的原因。作为对比,利用允许角范围小的KTP作为倍频晶体进行了同样的实验,KTP晶体的尺寸为2mm×2mm×8mm,采用Ⅱ类相位匹配切割。实验结果显示,在KTP晶体倍频情况下,激光器很容易实现561nm单谱线激光输出。实验结果与理论分析相一致。  相似文献   

17.
研究周期极化磷化镓晶体(GaP)、砷化镓晶体(GaAs)和周期极化铌酸锂晶体(PPLN)准相位匹配级联差频产生太赫兹辐射,相较于差频过程,级联过程太赫兹辐射输出功率增大9.5倍。通过分析三波耦合方程,计算并比较晶体的波矢失配量、极化周期和太赫兹功率,结果显示,基于GaP晶体产生的太赫兹功率略大于GaAs晶体输出的功率;GaAs晶体的极化周期最小;PPLN晶体的波矢失配量和极化周期取值范围最小,而输出的太赫兹功率和转换效率最高。建立基于周期极化掺氧化镁铌酸锂晶体(MgO:PPLN)准相位匹配原理的宽调谐激光系统,分析吸收因子对输出太赫兹功率的影响,计算级联差频峰值功率和转换效率。十五阶峰值功率3.72 MW,泵浦光总能量到太赫兹辐射能量的转换效率是3.72%。  相似文献   

18.
高功率激光倍频过程的热效应分析   总被引:2,自引:0,他引:2  
在高功率倍频过程中,非线性倍频晶体由于吸收了基波和谐波的功率,造成倍频晶体内温度的变化,破坏了晶体原来的相位匹配条件,从而导致频率变换效率降低、输出谐波功率不稳定等问题,对于高功率高重复频率激光器系统尤其严重.根据热传导方程分析了晶体内部的热分布,利用非线性晶体的折射率方程分析了非线性倍频晶体温度变化时,其相位匹配、允许参量以及光波走离角的变化情况,为实现高功率倍频激光奠定了理论基础.  相似文献   

19.
LD抽运Nd:YVO4连续3波长激光器   总被引:1,自引:0,他引:1  
报道了一种利用激光二极管(LD)端面抽运Nd:YVO4激光晶体,通过硼酸铋(BIBO)晶体的腔内和频(SFM)与倍频(SHG),实现3个二次谐波连续激光同时输出的3波长激光器.利用Nd:YVO4晶体的两条发射谱线(分别为1064 nm和1084 nm)作为基频光,并选掸长度为1.5 mm,Ⅰ类临界相位匹配方式切割(对于1064 nm倍频)的BIBO作为非线性晶体,通过调节BIBO晶体对3个非线性过程(1064 nm倍频,1084 nm倍频及1064 nm与1084 nm和频)的相位因子,即非线性过程的转换效率,使激光器同时获得了两个倍频光和一个和频光,即3个波长:532 nm,537 nm和542 nm激光输出.实验结果表明当两个基频光波长相差较小时,采用相位允许角小的非线性晶体同时进行腔内和频与倍频是获得多波长固体激光器的一种实用方法.  相似文献   

20.
通过对单轴晶非共线相位匹配理论的分析 ,推导出相位失配梯度、接受容限角和有效非线性系数的精确表达式。以KDP晶体为例进行了非共线倍频的理论计算和实验测试。对实验结果的分析验证了非共线相位匹配理论分析和数值计算的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号