首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
王刚  陶柳 《机床与液压》2021,49(22):164-168
阀后补偿负载敏感液压系统中关键元件压力补偿阀通过阀前后补偿压差来调节流量,因而会造成一定的能量损失,降低系统效率的同时元件使用性能及寿命也大大降低。鉴于此,提出一种以串联液阻分压来降低补偿压差的节能阀后补偿负载敏感液压系统。利用AMESim仿真软件建立仿真模型并进行仿真分析。结果表明:在相同的工况下,改进后的负载敏感系统,能够降低工作时压力补偿阀的能量损耗,提高系统及元件的性能及使用寿命。所得结论为阀后补偿负载敏感液压系统的优化设计提供了参考。  相似文献   

2.
赵燕  韩家威  张笑 《机床与液压》2017,45(20):89-92
针对负载敏感液压系统在快操作时出现压力冲击的问题,以汽车起重机卷扬系统为载体进行防冲击技术研究。采用AMESim软件建立负载敏感液压系统的仿真模型,结合实验数据对仿真模型进行优化。通过仿真分析,找出导致压力冲击的根源。在此基础上,对液压系统进行优化设计。仿真结果和整机测试数据均表明:采用三通流量阀原理的防冲击阀,能有效降低液压系统压力冲击幅值,防冲击效果显著。  相似文献   

3.
以某型电动挖掘机LUDV液压系统为研究对象,从减小溢流损失、提高节能的角度,结合异步电机调速性良好的特点,介绍一种液压系统流量匹配方法。液压系统采用泵阀同步控制方式,预设多路阀的主阀压差为1.4 MPa,手柄信号同时控制定量泵的转速和LUDV多路阀的过流面积。提出挖掘机工作机构所需流量的数学模型,建立了液压系统AMESim仿真模型并进行仿真分析。仿真结果表明:当挖掘机执行机构单一或者复合动作时,泵的输出流量为期望值,泵的出口压力比最高负载传感压力高1.4 MPa;当系统流量饱和时,主阀压差减小,各执行机构流量按需求流量成比例分配而不发生干涉。  相似文献   

4.
陶柳  徐化文  方婷 《机床与液压》2021,49(16):150-153
针对传统阀后补偿负载敏感液压系统较低压力侧压力补偿阀工作时温升高、使用性能及寿命低等缺点,提出一种两个液阻并联分流的改进阀后补偿负载敏感液压系统。利用AMESim仿真软件建立该系统的模型并进行仿真研究。结果表明:在相同工况下,改进后的负载敏感系统能够根据需要灵活降低单个压力补偿阀上的能量损耗,提高系统及元件的性能和使用寿命。所得结论为阀后补偿负载敏感液压系统的优化设计提供了参考。  相似文献   

5.
杨敬  都佳  李骞飞 《机床与液压》2020,48(17):64-69
目前,起重机普遍使用的传统抗流量饱和负载敏感液压系统存在响应速度慢、速度精度差、能耗大的缺点。为克服这些缺点,建立以电子压力补偿原理为基础的起重机双阀芯泵阀协同压力流量复合控制液压系统。对起重机典型负载原理进行分析,提出一种以手柄开度信号为阈值的多模式控制策略。建立传统抗流量饱和负载敏感液压系统AMESim仿真模型,并通过试验验证了仿真模型的正确性。建立起重机双阀芯泵阀协同压力流量复合控制液压系统AMESim仿真模型。仿真结果表明:与传统抗流量饱和负载敏感系统相比,双阀芯泵阀协同压力流量复合控制液压系统在变幅油缸单动作微动模式下使用主阀和小流量伺服阀速度精度更高,速度跟踪误差分别降低26.2%和56.5%,卷扬马达单动作微动模式下使用主阀和小流量伺服阀速度跟踪误差分别降低46.1%和69.8%。  相似文献   

6.
小型挖掘机液压系统分析   总被引:2,自引:1,他引:1  
针对小型液压挖掘机的工况特点,分析并比较小型液压挖掘机节流控制系统、负载敏感控制系统以及与负载无关的流量分配系统(LUDV)的功率损失和可控性,表明LUDV系统是小型挖掘机液压控制系统最佳选择。  相似文献   

7.
针对多执行机构负载敏感液压系统回路之间的耦合干扰现象,分析引起负载敏感液压系统压力冲击和耦合干扰的原因,指出工作回路流量控制阀关闭时,变量泵排量调节的响应延迟,导致泵的出口流量大于通过流量控制阀的流量,使液压泵出口处产生压力冲击,并造成剩余回路流量波动。基于AMESim软件建立多执行机构负载敏感液压系统仿真模型,对比分析在泵出口处设置防冲击回路对于抑制压力冲击从而解决回路之间耦合干扰的作用。结果表明:防冲击回路可以显著降低多执行机构负载敏感液压系统回路之间的耦合干扰。  相似文献   

8.
负载敏感液压控制系统在多执行器复合工况下,液压泵容易出现流量饱和工况,使得系统的负载敏感特性较差。针对上述问题,设计一种混合型压力补偿液压控制系统,建立该系统的数学模型和AMESim仿真模型,进行理论和仿真分析。结果表明:混合型负载敏感压力补偿系统定差阀前置支路具有大流量优先特性,且液压泵出现流量饱和时,在满足流量优先的条件下,剩余流量能够按照比例进行分配,实现抗流量饱和。研究结果为负载敏感压力补偿系统的设计提供参考。  相似文献   

9.
为研究某闭式液压转向系统的动态特性并进行热力学分析,建立该液压转向系统的仿真模型及热液压模型。结合设计要求及现场试验,研究液压泵流量、溢流阀压力以及系统负载对转向特性的影响,并对转向液压缸两腔压力进行对比分析。结果表明:较低的流量输出可减小液压冲击,过高的负载会产生较大的液压冲击,加入蓄能器能大幅改善液压缸工作压力的稳定性。通过建立的热液压模型,对系统的温升过程进行了仿真分析,结果表明:溢流阀设定压力对液压缸温升影响较大,应根据负载实际情况设定合适的溢流压力;负载的增加导致液压油温度升高,进而造成溢流损失、液压缸内泄漏增加以及管路摩擦力上升,在实际中应避免系统工作在极端负载状况。通过现场试验,完成了系统参数的重新匹配,改善了液压系统动态特性,同时使得油温大幅下降。研究结果为闭式液压系统动态特性及热力学设计提供了参考。  相似文献   

10.
陈婵娟  武欢 《机床与液压》2018,46(22):33-36
为解决履带钻机给进和回转两个回路相互干扰的问题,提高整机节能效果和可靠性,建立简化履带钻机LUDV液压系统原理图。以1 000 N·m履带钻机为例,对相关技术参数进行匹配计算,利用AMESim软件搭建物理仿真模型,对LUDV液压系统流量欠饱和和饱和两种工况分别进行仿真,并对该LUDV液压系统动态特性进行研究,得到了LS反馈阀弹簧刚度和系统压差对该液压系统的影响。研究结果为LUDV液压系统在履带钻机中的应用提供了理论依据。  相似文献   

11.
针对液压支架高压大流量阀设计以双蓄能器组为辅助动力源的试验台,配合增压缸实现系统的分时快速加载。该试验台可为被试阀提供近乎阶跃的短时大流量高压冲击,模拟液压支架承受严重顶板冲击的工况。基于AMESim软件搭建试验系统的仿真模型,并以FAD100/40型安全阀为试验对象,进行冲击压力安全性和公称流量启溢闭特性仿真分析。结果表明:所设计的安全阀冲击安全性试验系统能在规定时间内达到国家标准规定的阀前冲击压力;公称流量启溢闭特性试验系统提供的被试阀开启压力、流量、压力上升梯度及公称流量溢流时间均满足国家标准,进一步验证了试验台及试验方法的合理性。  相似文献   

12.
符爱红 《机床与液压》2016,44(8):99-102
针对全液压六臂伞钻能量损失较大的问题,设计了负载敏感液压操控系统,并建立了全液压伞钻负载敏感系统AMESim仿真模型,仿真验证了系统的负载敏感性能以及回转回路的调速性能,结果说明:负载敏感回路中流量与控制阀开口量相关;在多个负载同时工作时,系统压力和流量均为负载敏感阀所调定的压力和流量,验证了液压系统设计与参数设置的合理性。  相似文献   

13.
针对传统液压助力转向系统的压力和流量损失问题,设计了基于负载敏感技术的液压助力转向系统。基于仿真软件AMESim对负载敏感泵和液压助力转向系统进行了建模。仿真结果表明:当在直线行驶工况下,该系统以低压、小流量的待机状态输出;当有转向需求时,系统能根据转阀开启阀度,快速调节泵出口的压力和流量,并且能够满足助力需求。基于负载敏感技术的液压助力转向系统在车辆行驶过程中能减小能量消耗,达到节能的目的。  相似文献   

14.
介绍了双轮铣槽机铣削装置的液压系统原理,并运用AMESim软件建立了整个铣轮液压系统仿真模型,并根据相关参数的设计要求,设置主阀口在8种不同开度,在高、低两种负载的外界输入条件下,分析铣轮马达流量、泵口压力随时间的变化,为双轮铣槽机液压系统设计提供了参考和依据。  相似文献   

15.
液压缸脉冲式激振系统数学建模及其实验测试研究   总被引:1,自引:0,他引:1  
吴杏  张俊萍  赖成 《机床与液压》2017,45(16):135-138
液压激振系统为液压传动领域一个重要的研究方向。在分析液压缸脉冲式激振系统激振过程的基础上,建立液压缸两腔压力和流量波动的微分方程。通过测试得到了脉冲式激振系统中液压缸脉冲式液压变化频率规律,从波形规律可看出两液腔压力变化规律与理论分析相一致。在定量泵供油的节流调速系统中,将流量控制阀和溢流阀配合使用,以借助控制机构使阀芯相对于阀体孔运动。压力损失会使得振动幅值稍有降低的变化趋势,但这影响不大。液压脉冲系统的液腔脉冲式变化频率规律的研究为相关振动系统的设计提供了理论依据。  相似文献   

16.
在分析XH10Z AYFT 00(GJ)〖BFQ〗回转缓冲阀结构及原理的基础上,在AMESim中建立该回转缓冲阀的模型,并搭建回转驱动液压系统。根据实际工况确定系统参数,对不同工况进行动态仿真。通过对比分析仿真得到的马达及缓冲阀的流量和压力,得到回转缓冲阀动态特性。结果表明:回转缓冲阀可有效减缓压力冲击,延长设备的使用寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号