首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《机械传动》2013,(5):81-85
鼓式制动器制动过程中不仅涉及到接触应力场、摩擦生热的温度场,而且它们之间存在相互耦合作用。采用直接热力耦合的有限元方法研究,鼓式制动器一次紧急制动工况下的瞬态温度场。通过仿真计算得到制动鼓旋转角速度随时间的变化曲线,摩擦接触区域的温度分布以及不同位置节点温度的时间历程曲线。  相似文献   

2.
针对某凸轮式鼓式制动器在使用中出现制动底板断裂问题,应用ANSYS Workbench建立了该底板有限元结构分析模型,并按制动器制动力矩为最大时的情况,对底板进行了材料非线性弹塑性有限元分析。计算表明,在与制动底板断裂断面相应部位,有多点的应力超过了底板材料的屈服极限,制动底板强度不足。依据有关计算结果,对底板薄弱部位结构进行了改进,为底板的合理设计提供了参考方案。  相似文献   

3.
对某一国产的双向自增力鼓式制动器的蹄板进行受力分析,建立了力学模型,应用大型的机械CAD/CAE/CAM软件I-DEAS对其强度进行有限元方法的计算,分析,求解它在工作状态下的应力情况。结果表明,所做的有限元分析有较高的精确度,且与实际情况相吻合,为该制动器的 改进设计提供了理论基础。  相似文献   

4.
蹄-鼓式制动器热弹性耦合有限元分析   总被引:18,自引:1,他引:18  
吕振华  亓昌 《机械强度》2003,25(4):401-407
首先探讨蹄—鼓式汽车制动器的摩擦接触热弹性耦合非线性动力学问题及其分析方法,包括摩擦生热模型、多物理场中的弹性体有限元模型、接触问题模型的建立方法以及相应的数值分析方法。然后,利用有限元分析软件ADI-NA建立一种新型蹄—鼓式制动器热弹性耦合动力学分析的三维有限元模型,确定对模型求解的位移边界条件和热边界条件,设定材料物性参数、加载过程及模拟工况,探讨进行制动器热弹性耦合有限元分析的过程,通过仿真计算得到制动器工作过程中摩擦副间接触力分布、制动鼓瞬态温度场、应力场、变形场等重要信息。  相似文献   

5.
叶青 《中国机械》2014,(15):279-280
鼓式制动器由于其效能高、结构简单,在汽车上得到广泛的应用。但由于汽车鼓式制动器的应用环境较为复杂,在制动过程中会涉及到多体动力学、摩擦学与接触力学等,接触与机械振动情况非常复杂。本文采用运动学分析,对提高性能的主要技术进行分析,以供参考。  相似文献   

6.
鼓式制动器的有限元模拟与接触分析   总被引:1,自引:0,他引:1  
运用ANSYS Workbench平台建立了某鼓式制动器的三维有限元模型,对摩擦衬片与制动鼓之间的摩擦接触进行模拟。通过改变边界条件的施加方式及不同的接触对设置参数,确定了模拟鼓式制动器制动过程的接触分析边界条件及接触对的设置方法。采用三个载荷步加载,分析了制动力矩在制动过程中的变化规律,得出摩擦力矩达到平稳时接触压强的分布特性及制动器的等效应力与变形。为优化制动器结构参数、改善鼓式制动器磨损均匀性和制动效能提供了参考依据。  相似文献   

7.
制动器是车辆的重要组成部分,制动器的热稳定性对车辆等稳定性、安全性等有很大影响。在有限元软件环境中建立鼓式制动器的有限元模型,鼓式制动器加载条件按照实际安装情况加载,同时考虑螺栓预紧力对制动鼓仿真性能的影响。分析工况分为紧急制动和德国15次连续制动两种工况。仿真分析结果表明:螺栓预紧力对鼓式制动器的仿真分析结果影响较大;紧急制动的工况下制动鼓最高温度远低于德国15次连续制下的制动鼓最高温度;温度越高引起的热应力越大;给制动器的进一步改进提供指导依据。  相似文献   

8.
鼓式制动器是决定汽车安全性的重要部件之一,由于造价便宜,制动效能高,被广泛应用在客车、重型货车上,为了能够在仿真过程中考虑应力场与温度场之间的交互作用,所以需要对鼓式制动器进行热结构耦合分析。首先运用软件CATIA建立了某轻型客车鼓式制动器三维结构模型,然后利用有限元前处理软件Hyper Mesh对鼓式制动器的制动鼓、制动蹄、摩擦片进行了网格划分,得到了有限元网格模型,最后将网格模型导入ANSYS,对零件进行热结构耦合分析,获得了紧急制动工况下制动鼓等重要零件的温度场、应力场及位移场分布云图。仿真结果表明该制动器在紧急制动工况下满足强度设计要求,且在制动过程中不会产生明显热衰退现象,说明了该鼓式制动器的设计是合理的。  相似文献   

9.
运用通用有限元分析软件ANSYS Workbench建立了某鼓式制动器的三维几何及有限元模型。利用制动器应力测定试验方法和试验结果,采用三种不同的领从蹄上促动力的分配方式,并考虑凸轮转动和摩擦系数等不同方案,分析了制动力矩在制动过程中的变化规律,得到与试验结果相对应的仿真结果。将仿真结果与试验结果进行比较分析,研究合理的制动器应力场的有限元分析方法。在此基础上得出制动蹄与鼓之间的接触压强的分布特性及制动器各部件上的等效应力。  相似文献   

10.
运用软件UG4.0建立某型号轿车盘式制动器总成的三维模型,通过软件集成技术在有限元软件MSC Nastran环境下对制动器的活塞、支架及钳体等重要零件进行了有限元分析,获得了制动器总成零件在工作状态下应力、应变及位移分布云图.仿真结果表明制动器的活塞、支架和钳体满足强度设计要求,证明盘式制动器的设计是合理的.  相似文献   

11.
有限元分析在鼓式制动器设计中的应用   总被引:3,自引:1,他引:2  
采用有限元分析软件ANSYS对鼓式制动器摩擦衬片与制动鼓之间的接触应力进行了有限元仿真.在模拟制动蹄压紧制动鼓过程中采用以实际促进力加载方式,较为精确地得出了接触应力场及效能因数等有用信息,为进一步改进制动器结构设计提供了依据.  相似文献   

12.
通过对汽车鼓式制动器摩擦材料、结构参数等进行对比分析,找出鼓式制动器静态制动噪声的主要原因.根据分析的结果对制动器进行优化设计,并进行道路试验验证,使静态制动噪声问题得到解决.  相似文献   

13.
利用Matlab优化设计汽车鼓式制动器   总被引:3,自引:1,他引:3  
鼓式制动器是汽车中广泛采用的一种制动器。制动器的制动效能因数对制动时间和制动效率有着重要影响,因此以制动效能因数为优化的目标函数,给出了鼓式制动器通用的优化设计数学模型,并结合实例利用Matlab优化工具箱进行了分析计算。  相似文献   

14.
采用有限元方法分析了鼓式制动器低频制动的振动特性,并进行了验证。在鼓式制动器机理分析的基础上,以一款商用车上使用的鼓式制动器为原型建立了鼓式制动器低频制动时振动的有限元模型,通过模拟计算制动过程中的瞬态响应,分析了鼓式制动器在制动过程中低频振动的特性。试验结果表明,有限元分析结果与试验结果基本一致。  相似文献   

15.
何亚峰 《机械传动》2012,36(3):84-86
盘式制动器由于散热性能和制动效能好等优点,被广泛应用于汽车行业中。利用大型AN-SYS有限元平台对汽车盘式制动器进行了应力应变场量数值分析,通过改变制动器设计参数(制动力、摩擦因数、制动片厚度)得到了设计参数与制动性能的影响关系,其结果可为汽车制动器设计提供一定的理论依据和参考。  相似文献   

16.
对某一国产的双向自增力鼓式制动器的蹄板进行受力分析 ,建立了力学模型 ,应用大型的机械 CAD/CAE/ CAM软件 I- DEAS对其强度进行有限元方法的计算、分析 ,求解它在工作状态下的应力情况。结果表明 ,所做的有限元分析有较高的精确度 ,且与实际情况相吻合 ,为该制动器的改进设计提供了理论基础  相似文献   

17.
《机械传动》2013,(11):122-125
为了使鼓式制动器的模拟仿真更接近于真实状态,联合运用三维CAD建模软件CATIA、有限元分析软件Hypermesh及多体动力学分析软件MSC.ADAMS,考虑将凸轮、制动底板、制动蹄及制动鼓视为刚性体,将摩擦片视为柔性体建立了鼓式制动器的刚柔耦合动力仿真模型,并基于动力仿真的结果为鼓式制动器的有限元热结构耦合分析提供实时的凸轮促动力,动力仿真得到的领、从蹄促动力关系与相关文献吻合,验证了模型的正确性,最后基于热结构耦合分析了制动鼓破坏失效的原因并提出了相应的改进措施。  相似文献   

18.
汽车的制动过程从能量守恒观点来看,是通过摩擦将汽车的机械能转变为制动器的热能,并有一部分热能向大气中耗散的过程。基于ANSYS建立了某汽车盘式制动器三维实体模型,分析了紧急制动工况下盘式制动器的温度场和热应力的分布。  相似文献   

19.
《机械传动》2014,(1):129-133
鼓式制动器的制动过程涉及到接触应力场和摩擦生热温度场的相互耦合作用,在制动过程中,温度的变化会对结构的变形及材料属性产生影响,同时,结构的变形也会改变结构的热边界条件,进而又影响温度的变化。采用ANSYS直接耦合场方法建立鼓式制动器非线性仿真模型,考虑摩擦的影响,仿真计算一次紧急制动工况下鼓式制动器应力场、温度场以及摩擦副间接触压强分布随时间的变化情况。  相似文献   

20.
鼓式制动器的制动过程涉及到接触应力场和摩擦生热温度场的相互耦合作用,在制动过程中,温度的变化会对结构的变形及材料属性产生影响,同时,结构的变形也会改变结构的热边界条件,进而又影响温度的变化。采用ANSYS直接耦合场方法建立鼓式制动器非线性仿真模型,考虑摩擦的影响,仿真计算一次紧急制动工况下鼓式制动器应力场、温度场以及摩擦副间接触压强分布随时间的变化情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号