首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
在单晶硅片磨削用树脂结合剂金刚石砂轮中分别添加不同体积分数的固体润滑剂氟化钙(CaF2),评估其对砂轮表面结构、砂轮磨损量、磨床主轴电流的影响,并测量和计算单晶硅片的表面粗糙度和表面损伤层厚度。结果显示:随CaF2用量增加,磨床主轴电流、砂轮磨损量、单晶硅片的表面粗糙度值和表面损伤层厚度均下降;当CaF2体积分数为25%时,主轴电流降至约6.4 A,砂轮磨损量降到每片0.448 6 μm,单晶硅片的表面粗糙度Ra、Ry和Rz分别为0.056 μm、0.382 μm和0.396 μm,表面损伤层厚0.559 6 μm。加入CaF2固体润滑剂可有效改善树脂金刚石砂轮的性能,提高单晶硅片表面的加工质量,且CaF2体积分数为25%时效果最佳。   相似文献   

2.
考察脉宽tON、峰值电流IIP、脉冲间隙调整MA、脉冲间隙tOFF对PDC加工精度和加工效率的影响。通过正交试验确定其最佳电加工工艺参数为:tON2 μs、IIP10 A、MA1倍和tOFF4 μs,其加工时间为458 s;加工后YG层的表面粗糙度Ra1为1.04 μm,PCD层的表面粗糙度Ra2为0.59 μm。在此基础上,通过单因素试验和分割试验进一步考察PIKADEN高压脉冲控制PP和高压辅助电源HP对电加工精度和效率的影响。结果发现:当PP设定为11、HP设定为013,即追加1.5 A高压辅助电流时,PDC的最佳电加工工艺参数为:tON4 μs、IIP10 A、MA1倍和tOFF4 μs,其加工时间最短,为130 s;加工精度较高,加工后YG层的Ra1为1.30 μm、PCD层的Ra2为0.56 μm。与正交试验确立的最佳工艺参数相比,其加工精度相差不大,但加工效率提高了3.5倍。   相似文献   

3.
熔融石英玻璃衬底的研磨加工是其超光滑抛光加工的基础工序。采用游离磨料对熔融石英玻璃进行单面粗研和精研加工,研究磨料质量分数、研磨盘转速、研磨液流量和研磨时间对石英玻璃表面质量和材料去除率的影响。结果表明:粗研过程中,随着磨料质量分数、研磨盘转速、研磨液流量的增大,工件材料去除率先增大后减小;随着加工时间的延长,表面粗糙度Ra逐渐达到稳定水平。在磨料质量分数4%、研磨液流量20 mL/min、研磨盘转速60 r/min、加工30 min时,熔融石英玻璃衬底的表面粗糙度Ra达 0.11 μm。在熔融石英玻璃衬底的精研过程中,选用平均粒径3 μm的CeO2加工50 min后的表面粗糙度Ra最低,为4.11 nm。   相似文献   

4.
针对非球面光学元件的结构特点及其表面质量要求,在磁性混合流体抛光基础上,设计并制作以径向充磁永磁体为旋转磁场源的半球头抛光头。首先,通过Ansoft Maxwell磁场仿真,分析对比不同形状、不同尺寸磁体和偏心距下各磁体周围磁场的分布状况,选定直径为10.0 mm、高度为5.0 mm、偏心距为2.5 mm、径向充磁的圆柱形磁体。其次,通过观测并比较不同组成、配方和供应量的磁性混合流体在抛光头上的行为,确定磁性混合流体抛光液成分。最后,采用制备的磁性混合流体抛光液及自制的抛光头对非球面PMMA工件进行抛光试验。经过15 min抛光后,PMMA工件表面质量明显改善,其面型精度Rq由0.703 μm下降到2.433 nm,表面粗糙度Ra由0.545 μm下降到1.786 nm,说明研制的抛光头能实现非球面工件的纳米级抛光。   相似文献   

5.
目的 提出一种光学玻璃机械加工亚表面损伤深度的检测方法,给光学玻璃超精密抛光的加工深度提供参考依据。方法 首先通过实验分析K9玻璃研磨试样在化学蚀刻过程中亚表面裂纹的结构变化,采用探针式粗糙度仪检测化学蚀刻表面的裂纹深度,并探讨探针半径和化学蚀刻时间对裂纹深度测量结果的影响,建立以蚀刻表面峰谷粗糙度(PV)表征亚表面裂纹深度的测量条件。然后利用激光共聚焦显微镜检测化学蚀刻表面PV粗糙度,确定光学玻璃的亚表面裂纹深度。最后采用截面抛光法直接检测光学玻璃的亚表面裂纹深度,验证上述两种检测方法的可靠性。结果 以蚀刻表面PV粗糙度表征亚表面裂纹深度的测量条件为,测量介质须在蚀刻表面裂纹开始融合之前有效探测至裂纹底部。针对W18和W40磨粒研磨的K9玻璃试样,采用激光共聚焦显微镜检测蚀刻表面PV粗糙度方法测得的两种试样裂纹深度为12.82 μm和20.45 μm,直接测量方法的测量结果为12.50 μm和19.34 μm。两种方法测量结果的偏差分别为2.56%和5.74%,一致性较好。结论 基于化学蚀刻和激光共聚焦显微镜检测光学玻璃亚表面损伤深度的方法不受表面裂纹宽度限制,满足以蚀刻表面PV粗糙度表征亚表面损伤深度的测量条件,且对试样损伤较小,提高了光学玻璃亚表面损伤深度的测量效率和结果可靠性。  相似文献   

6.
磁流变抛光光学表面加工面形控制技术研究   总被引:3,自引:0,他引:3  
磁流变抛光是一种新型超精密光学表面加工方法。由于其抛光过程可控,磁流变抛光过程可以有效去除表面及亚表面破坏层,提高表面质量,修正元器件表面面形误差。抛光过程容易实现计算机数控,通过数控过程的合理设计,磁流变抛光过程可以有效地对球面及非球表面进行抛光加工。研究了实现面形修正的驻留时间算法,并对光学球面器件进行了试验加工,抛光后其表面面形误差2点峰谷值从0.17μm降低到0.07μm。  相似文献   

7.
目的 采用对环境友好的抛光工艺来改善304不锈钢表面抛光质量。方法 基于化学机械抛光(CMP)工艺,采用主要成分为氧化铝(Al2O3)磨料、L-苹果酸、过氧化氢(H2O2)、乳化剂OP-10、甘氨酸的绿色环保抛光液,设计并试验了pH值,H2O2、乳化剂OP-10、甘氨酸质量分数的4因素4水平CMP正交试验。采用极差法分析了4个因素对表面粗糙度和材料去除率的影响。采用电化学工作站,通过动电位极化曲线法,分析304不锈钢在不同抛光液环境下的静态腐蚀特性。通过X射线光电子能谱(XPS),分析304不锈钢在不同抛光液环境下的表面元素和化学组分变化。结果 开发了一种不含任何强酸、强碱等危化物品的新型环保化学机械抛光液。通过绿色CMP加工,在70μm×50μm范围内将304不锈钢平均表面粗糙度从CMP前的7.972 nm降至0.543 nm。与之前报道的304不锈钢抛光相比,绿色CMP抛光后的表面粗糙度最低。通过正交试验,得到了绿色CMP加工的最优抛光液参数:pH=3...  相似文献   

8.
针对芬顿反应CMP抛光GaN晶片的抛光液,开展以表面质量为评价指标的参数优化试验,找出抛光液组分的最优配比。结果表明:当H2O2质量分数为7.5%时,GaN晶片加工表面效果最优,表面粗糙度达到3.2 nm;催化剂能有效调节芬顿反应的速率,对比液体催化剂FeSO4溶液和固体催化剂Fe3O4粉末,固体催化剂Fe3O4粉末能在溶液中持续电离Fe2+,使芬顿反应能在整个加工过程中持续作用。当Fe3O4粉末粒径为20 nm时,抛光效果最佳,表面粗糙度达到3.0 nm;对比氧化铝、氧化铈、硅溶胶磨料,硅溶胶磨料抛光的表面效果最佳,晶片表面粗糙度达到3.3 nm;当硅溶胶磨料质量分数为20.0%,磨料粒径为60 nm时,抛光后晶片表面粗糙度达到1.5 nm。抛光液组分优化后,采用最优的抛光液组分参数抛光GaN晶片,其能获得表面粗糙度为0.9 nm的光滑表面。   相似文献   

9.
段海栋  孙桓五  纪刚强  杨冬亮  李思雪 《表面技术》2022,51(6):346-353, 389
目的 研究不锈钢经电解质等离子体抛光后,表层元素化学形态的变化及机制,为材料去除机理、表面性能、工艺参数、抛光液处理等相关研究提供参考。方法 通过表面粗糙度测试仪、扫描电镜分别对加工前后试样表面粗糙度、形貌变化进行测试表征。通过X射线光电子能谱技术,对加工前后试样表面及抛光液沉积物中主要元素的组成、化学态、分子结构进行测试表征。结合加工现象及材料去除机理,分析加工过程中固、液、气、等离子体之间的界面反应。结果 电解质等离子体抛光后,试样表面平整光亮,预处理中粗磨的痕迹已被完全去除。Ra平均值由0.311μm降低至0.045μm,Rq平均值由0.442μm降低至0.059μm,Rz平均值由3.260μm降低至0.369μm。与抛光前试样相比,抛光后试样表层检测到S+6和Ni+2,沉积物中的Fe均为Fe+3,Cr主要为Cr+3,含有少量Cr+6。抛光后试样表面及沉积物中金属元素的化合物主要为氧化物和氢氧化物。结论 电解质等离子体抛光316LVM不锈钢有显著效果,抛光后试样表面粗糙度...  相似文献   

10.
为研究单晶硅磨削损伤,使用金刚石磨块在不同磨削速度和压力下对单晶硅表面进行高速划擦试验,金刚石的粒度尺寸为38~45 μm。通过测量硅片表面粗糙度、亚表面损伤深度和材料去除率,研究磨块的磨削速度和压力对材料去除特性的影响规律。结果表明:相同压力时,材料去除率随磨削速度增加呈先增大后减小的趋势,亚表面损伤深度逐渐变小;随法向压力增大,亚表面损伤深度变化不明显;在5N压力下,表面粗糙度值Ra变化明显,由6.4 μm减小到3.2 μm;而10 N压力下,Ra无明显变化。   相似文献   

11.
为优化圆柱滚子外圆研磨,以正交试验研究工件偏角、工件位置及转速(包括上下抛光盘转速、偏心轮转速和外齿圈转速)对材料去除率、表面粗糙度和圆度的影响。结果表明:工件偏角对材料去除率的影响最显著,转速组合次之,工件位置最小;转速对表面粗糙度的影响最显著,工件偏角次之,工件位置最小;工件位置对圆度的影响最显著,转速组合次之,工件偏角最小。最佳条件为工件偏角0°、工件位置0.8,各转速值分别为-76、84、80和48 r/min。加工15 min后,圆柱滚子的材料去除率可达到0.541 μm/min;表面粗糙度由0.078 μm降至0.045 μm,比初始表面粗糙度降低42.3%;圆度由0.74 μm降至0.41 μm,比初始圆度降低44.6%。   相似文献   

12.
为了获得超光滑光盘模具镜面,选用金刚石磨料抛光光盘模具。分析了金刚石粒度、分散介质与抛光盘硬度等因素对表面质量的影响。试验结果表明:采用0.1μm粒度的油性金刚石抛光液,硬度为20.8 HV的抛光盘,在合适的抛光工艺条件下可获得表面粗糙度Ra=0.57 nm,平面度Pv达到0.56μm的超光滑镜面。  相似文献   

13.
Fine finishing of gears with high shape accuracy   总被引:1,自引:0,他引:1  
C. Heinzel  A. Wagner 《CIRP Annals》2013,62(1):359-362
Besides high demands on surface integrity machining of gears aims on very low surface roughness and high shape accuracy. These properties will have positive impacts on the lifetime of gears. In this context the challenges of profile grinding of cylindrical gears by using elastic bonded grinding wheels are addressed. For this new gear fine finishing approach, the very high potential of the process is revealed by analyzing the influence of the grinding wheel specification and the machining parameters on surface finish. Results show that gears with high shape accuracy and very good surface finish with almost optical quality can be achieved.  相似文献   

14.
本文进行了氮化铝基片的集群磁流变抛光加工研究,分析了主要工艺参数的影响和加工表面形貌特征.实验结果表明:集群磁流变抛光加工氮化铝基片可以实现高效率超光滑抛光,原始表面Ra1.730 2μm抛光60 min后可以达到Ra0.037 8μm.选用碳化硅磨料,磨料质量浓度为0.05 g/mL,工件与抛光盘转速比为5.8左右,...  相似文献   

15.
针对圆柱滚子高精密研磨加工过程中效率低下的问题,在双平面偏心盘式圆柱滚子抛光方法基础上,提出基于金刚石固结磨料磨具的圆柱滚子研磨方法.自制金刚石丸片,用上下盘黏附的金刚石丸片对圆柱滚子进行超精密研磨加工,研究丸片中不同金刚石微粉粒度代号、砂结比及研磨液黏度对圆柱滚子表面粗糙度、材料去除率、平均圆度误差及批直径变动量的影...  相似文献   

16.
Polishing of Structured Molds   总被引:4,自引:0,他引:4  
High precision molds for the replication of structured optical elements like Fresnel lenses or prism arrays are generated by diamond machining or precision grinding. In some cases surface quality of the replicated components is not sufficient to meet the increasing demands concerning surface roughness and form accuracy for optical applications. Subsequent polishing of the structures may therefore be necessary. Within this work structured molds were finished by a newly developed abrasive polishing process, by laser polishing, and by abrasive flow machining. This paper focuses on the material removal mechanisms and achievable surface quality in abrasive polishing. Surface quality is compared to that achieved by laser polishing and abrasive flow machining.  相似文献   

17.
阵列光纤组件端面的化学机械抛光试验研究   总被引:1,自引:1,他引:0  
邹文兵  刘德福  胡庆  陈广林 《表面技术》2015,44(4):132-136,146
目的设计合理的抛光工艺方案,获得平整的阵列光纤组件端面。方法采用单因素实验法研究抛光工艺参数对阵列光纤表面粗糙度与光纤凸起量的影响,利用光学表面轮廓仪与扫描电镜进行分析与观察。结果在抛光液磨粒质量分数为2%,抛光液流量为15 m L/min,抛光压力为50 k Pa,抛光盘转速为30 r/min的条件下,可以获得平整的阵列光纤组件端面。结论应用化学机械抛光技术加工阵列光纤组件,并设计合理工艺方案,可获得平整的阵列光纤组件端面,其表面粗糙度可低至42.6 nm,光纤凸起值可低至0.14μm。  相似文献   

18.
王嘉琪  肖强 《表面技术》2019,48(10):317-328
磁流变抛光技术具有加工面形精度高、表面粗糙度小、加工过程易于控制、表面损伤小、加工过程中不产生新的损伤等优秀特点,因此多应用于加工要求高的精密和超精密领域,最常应用于光学加工方面。综述了磁流变抛光技术材料去除数学模型的建立进展,论证了该模型的正确性,总结出该基本模型具有通用性,模型能够适用于平面和凸球面等形面加工中,此外,对实现计算机控制抛光过程的准确性具有指导意义。概述了磁流变抛光工艺实验进展,总结磁流变抛光影响抛光效果的主要因素是磁场强度和磁场发生装置,在优化工艺参数组合下能够达到纳米级表面,能够消除亚表面损伤,还能够用以加工各种复杂形面等。就目前磁流变抛光技术的发展新方向作以总结,包括集群磁流变抛光技术、组合磁流变抛光技术以及磁流变-超声复合抛光技术,介绍这几种加工方法的工作原理以及能够达到的实验效果。最后对现阶段磁流变抛光技术中存在的问题做出总结,并针对各个问题提出相对应的思考和展望。  相似文献   

19.
A novel polishing method, photoelectrochemical mechanical polishing (PECMP), is proposed for finishing the n-type gallium nitride semiconductor wafers. The method applies the ultraviolet-light irradiation to a wafer surface to generate unpaired electron-holes during a mechanical polishing process. The free-holes facilitate photoelectrochemical oxidation so as to accelerate material removal in the polishing process. The novel method achieves a material removal rate of 1.2 μm/h which is one order of magnitude higher than that of a conventional technique. In addition, the method removes the surface and subsurface damages induced in a previous machining process and obtains an atomically flat and damage-free wafer surface.  相似文献   

20.
电化学机械复合抛光是近年来发展起来的一种抛光新技术。针对粗糙表面的高效抛光问题,提出一种两阶段的电化学机械复合抛光和纯机械抛光相结合的方法。论述了脉冲电化学机械复合抛光加工的实验设备,进行了系统的工艺参数实验研究;用方差分析的方法分析了各参数对加工试件表面粗糙度影响的显著性,得出最佳的工艺参数;详细分析了不同磨头加工时各参数对表面粗糙度的影响规律。实验研究表明,利用脉冲电化学机械复合抛光的加工方法,采用各种类型的阴极工具头,可实现镜面加工。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号