首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
金属切削加工中航空铝合金板材的本构模型   总被引:4,自引:0,他引:4  
针对金属切削加工中材料的高温度、高应变、高应变率数据难以获取,无法建立动态本构模型这一技术难题,提出基于有限元模拟和"单因素"流动应力公式计算的联合建模策略.由"单因素"流动应力公式反复计算与模拟应变率对应的流动应力,基于新的流动应力有限元模拟迭代的进行并追求模拟值与实验结果的一致,获取能反映切削材料力学性能的"三高"数据和流动应力数据.数据分析表明,应变率对流动应力具有强化作用,温度对流动应力具有弱化作用,稳态变形后,各应力-应变曲线都变为一条趋于与应变坐标轴平行的直线.根据影响规律选取Zerilli-Armstrong经验模型,采用非线性回归分析建立起航空铝合金板材在铣削加工中的动态本构模型.最后进行实验验证,证明了该本构模型的正确性.  相似文献   

2.
为弥补现有航空钛合金切削加工本构模型研究的不足,提出基于正交切削理论的材料本构模型构建方法。根据正交切削理论建立剪切区内应力、应变、应变率、温度以及二维切削力的数学模型,开发以剪切区长度和厚度比值为迭代变量的建模技术,结合动态压缩力学性能实验(SHPB实验)和直角铣削实验,通过对各变形参数的数学求解,建立航空钛合金切削加工本构模型。在此基础上,进行材料本构模型的分析和实验验证。结果表明:航空钛合金材料在切削加工中具有明显的应变硬化特性、温度敏感特性和应变率敏感特性;钛合金随着应变率的增大,流动应力的增量逐渐减小,材料的应变率敏感性降低。  相似文献   

3.
从细微晶粒层面考虑了跨晶界切削、切削颤振等问题,基于晶界硬化效应的霍尔-佩奇定律和常规金属切削本构模型,建立了一种包含材料晶粒平均粒径的微细切削本构模型。通过仿真和切削力试验,对模型的系数进行了修正。研究结果表明,晶粒平均粒径在0.07~0.20 mm时,晶界强化效应较为明显,当晶粒平均粒径超过0.20 mm时,微细切削本构模型对切削力的预测趋势逐渐趋近于常规金属切削本构模型。且随着晶粒平均粒径的增大,常规金属切削本构模型与微细切削本构模型的预测差值逐渐减小。试验数据与理论数据对比验证了微细切削本构模型的准确性。  相似文献   

4.
镍铝青铜材料因具有较高的强度、耐磨损及优异的抗应力腐蚀特性而广泛用于螺旋桨的制造中。为了建立其在高应变率条件下的本构关系,提出一种切削加工过程中Johnson-Cook模型参数辨识的新方法。该方法综合了SHPB动态压缩实验、可预测切削力模型及直角切削实验。首先,根据SHPB实验得到镍铝青铜在不同应变率和温度下的真实流变应力-应变曲线;然后,建立关于预测流变应力和实验流变应力的目标函数,将SHPB实验辨识的本构参数作为初值,采用PSO算法反演得到最终的本构参数;最后,对可预测切削力模型和有限元仿真获得的切削力进行对比,验证了所辨识参数的准确性。  相似文献   

5.
《塑性工程学报》2016,(5):197-201
为了获得钛合金Ti6Al4V面向切削加工过程的Johnson-Cook模型参数,基于Oxley切削模型和自由正交切削实验资料,以主剪切区材料为研究对象,分别计算了剪切面上的剪切流动应力和剪应力。采用最小二乘原理将参数识别问题转化为以JC模型参数为未知量,以这两个应力差值的平方和为函数,以该函数的最小值为目标的优化问题,在合适的边界条件下,采用遗传算法搜索该优化问题的全局最优解,进而求得对应的本构常数。最后,用有限元仿真模型验证了本文所提本构参数识别方法的合理性及所得结果的正确性。  相似文献   

6.
总结了金属增材制造材料本构模型的获取方法,从准静态试验、热压缩试验、动态试验、硬度等效及微观组织模拟5个方面归纳了金属增材制造材料本构模型获取的研究成果。在此基础上,分析了目前存在的问题,并对未来的发展方向进行了展望。结果表明,通过准静态力学试验、热压缩试验及动态力学试验获取的本构模型可以反映材料宏观的力学性能,但无法反映材料的非均质特性;硬度等效本构模型可以体现一定的非均质性,但准确性无法得到保证;基于微观组织的本构模型对材料的性能表征较为全面,但目前仍处在探索阶段。随着计算机技术和增减材复合制造技术的发展,开发具有一定物理意义、考虑增材成形材料微观组织分布的本构模型获取方法将是未来主要的发展方向。  相似文献   

7.
电磁成形过程中金属板料经历宽应变率范围内的复杂载流高速变形,其宏微观行为与常规准静态成形过程存在显著差异,因此传统本构理论不能被完全应用于这一过程的精确预测。为此,首先总结了电磁成形中材料宏观力学行为及微观组织演变机理的特点,论述了本构建模的必要性、可行性及建模关键点。接着综述了适用于电磁成形过程的高速本构模型与载流变形本构模型的建模思想、应用效果及其先进性与局限性。最后,展望了宽应变率、宽温度范围适用的耦合电致塑性效应的机理型本构建模所面临的挑战。  相似文献   

8.
有限单元法已经广泛应用于实际生产过程中,其即可有效降低产品设计周期与成本,又能对现有工艺进行优化。但有限单元法计算结果的准确性与可靠性却高度依赖于所采用的本构模型。鉴于本构模型的重要性,文章对描述材料弹塑性变形行为的宏观本构模型的各个组成部分,即屈服准则、流动模型和硬化模型,分别进行了综述。回顾了典型的各向同性、各向异性以及拉压非对称的屈服函数,并比较了各自差异。讨论了关联流动模型与非关联流动模型的特点,分析比较了典型的硬化模型。同时,指出了宏观弹塑性模型研究的一些注意事项及将来的发展方向。  相似文献   

9.
形状记忆合金的细观力学本构模型   总被引:2,自引:0,他引:2  
周博  王振清  梁文彦 《金属学报》2006,42(9):919-924
定义了一个能反映形状记忆合金超弹性和形状记忆效应的概念:形状记忆因子.利用相变过程中自由能与马氏体体积分数之间的微分关系,推导了形状记忆因子演化方程.从细观力学角度建立了一个考虑马氏体择优取向过程的形状记忆合金三维本构模型.与功能相同的现有模型相比,该模型具有更简单的数学表述和清晰的物理意义.  相似文献   

10.
研究了 3104铝合金薄板的各向异性本构模型.通过单向拉伸试验获取3104铝合金薄板与轧制方向呈0°、45°及90°方向的力学性能参数,分析了 3104铝合金薄板的各向异性和硬化特性.根据拉伸试验所得数据,通过应变各向异性的标定方法,在Hill48准则和Barlat89准则的基础上标定出了两种不同的材料本构模型,并利用...  相似文献   

11.
This paper presents a unified mathematical model which allows the prediction of chatter stability for multiple machining operations with defined cutting edges. The normal and friction forces on the rake face are transformed to edge coordinates of the tool. The dynamic forces that contain vibrations between the tool and workpiece are transformed to machine tool coordinates with parameters that are set differently for each cutting operation and tool geometry. It is shown that the chatter stability can be predicted simultaneously for multiple cutting operations. The application of the model to single-point turning and multi-point milling is demonstrated with experimental results.  相似文献   

12.
Flow stress identification of work-piece materials for its use in machining operation simulation models has been long treated. The interest in defining the flow stress in an easy and fast way without using complicated dynamic characterization tests leads to analyse the inverse identification of flow stress employing cutting operations. This paper presents a revision of different aspects concerning the inverse algorithms applied to the primary shear zone (PSZ). It also presents a new approach for studying material's behaviour on the secondary shear zone (SSZ) where experimentally measured temperatures have been included in the inverse algorithm. Two steels, 42CrMo4 and 20NiCrMo5 are employed and finite element method (FEM) simulations are carried out in order to evaluate the usefulness of the calculated flow stress laws and proposed algorithm.  相似文献   

13.
14.
通过表面层理论和金属晶体塑性变形原理解释微细薄板材料在塑性变形中产生尺寸效应的内在机理。引入尺度参数,对经典的Hall-Petch公式进行修正,建立基于表面层模型理论的尺度依赖材料模型。利用所建立的材料模型分析微细薄板厚度及其晶粒尺寸对材料成形流动性能的影响。在晶粒尺寸一定的情况下,随着微细薄板厚度的减小,材料流动应力逐渐降低;晶粒尺寸越大的微细薄板,其流动变形的尺寸效应现象越明显。利用不同厚度的不锈钢和纯铜箔材的微细薄板拉伸真应力-应变曲线对所建立的材料模型进行验证,计算结果与实验结果比较吻合,验证了所建立的材料模型的合理性。  相似文献   

15.
介绍了板料成形数值模拟中材料模型的研究进展。将材料模型的理论研究分为屈服准则、强化模型、流动法则、加卸载历史4个方面,并进行简要综述;对材料在循环加载条件下应力应变曲线的实验获取方法进行了探讨,重点介绍了板料压缩、三点弯曲实验确定材料反向加载应力应变曲线的原理和方法;对当前屈服准则、强化模型的研究热点和发展方向进行了分析。  相似文献   

16.
The cutting force and the chip flow direction in peripheral milling are predicted by a predictive force model based on the minimum cutting energy. The chip flow model in milling is made by piling up the orthogonal cuttings in the planes containing the cutting velocities and the chip flow velocities. The cutting edges are divided into discrete segments and the shear plane cutting models are made on the segments in the chip flow model. In the peripheral milling, the shear plane in the cutting model cannot be completely made when the cutting point is near the workpiece surface. When the shear plane is restricted by the workpiece surface, the cutting energy is estimated taking into account the restricted length of the shear plane. The chip flow angle is determined so as to minimize the cutting energy. Then, the cutting force is predicted in the determined chip flow model corresponding to the workpiece shape. The cutting processes in the traverse and the contour millings are simulated as practical operations and the predicted cutting forces verified in comparison with the measured ones. Because the presented model determines the chip flow angle based on the cutting energy, the change in the chip flow angle can be predicted with the cutting model.  相似文献   

17.
This paper proposes a methodology to identify the material coefficients of constitutive equation within the practical range of stress, strain, strain rate, and temperature encountered in metal cutting. This methodology is based on analytical modeling of the orthogonal cutting process in conjunction with orthogonal cutting experiments. The basic mechanics governing the primary shear zone have been re-evaluated for continuous chip formation process. The stress, strain, strain rate and temperature fields have been theoretically derived leading to the expressions of the effective stress, strain, strain rate, and temperature on the main shear plane. Orthogonal cutting experiments with different cutting conditions provide an evaluation of theses physical quantities. Applying the least-square approximation techniques to the resulting values yields an estimation of the material coefficients of the constitutive equation. This methodology has been applied for different materials. The good agreement between the resulting models and those obtained using the compressive split Hopkinson bar (CSHB), where available, demonstrates the effectiveness of this methodology.  相似文献   

18.
E. Budak  E. Ozlu 《CIRP Annals》2008,57(1):97-100
A thermomechanical model for cutting processes is presented. The deformation in the shear zone is represented using Johnson-Cook material model. The rake contact is modeled using sticking and sliding zones, and their lengths are also predicted. The parameters of the material model and the friction coefficient on the rake are directly identified from a few number of orthogonal cutting tests. The model can predict cutting forces, shear angle and stress, pressure distribution and contact lengths on the rake face and temperature distribution. The application of the model to common operations such as turning and multi-axis milling is also presented with experimental verification, and satisfactory results are obtained.  相似文献   

19.
In this study, a thermal analysis model is developed to determine temperature distribution in orthogonal metal cutting using finite elements method. The model calculates the temperature distribution as a function of heat generation. The heat generation was introduced in the primary deformation zone, the secondary deformation zone and along the sliding frictional zone at the tool–chip interface, as well. The location and shapes of these zones was determined based on the literature work done so far and the model results. The temperature dependency of material properties was included in the model. A series of thermal simulations have been performed, and the value and location of maximum temperature have been determined for various cutting conditions. The comparison of the simulations with earlier works gave promising trend for the presented model. The thermal aspects of metal cutting as a result of the model findings were discussed.  相似文献   

20.
《CIRP Annals》2019,68(1):273-276
The flow model in metal cutting is applied to cold forging for forming a H-shaped double cup by moving the bottom of an ironed cup to a predetermined position. In the proposed process, the cutting flow occurs between the internal corners of the upper cup and the lower cup and the tool pressure is lower than half of the plasticity coefficient of the cup material. Products are formed without defects when the ratio of the depth of cut to the bottom thickness of the cup is larger than the critical value related to the corner radius of the ironed cup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号