首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
生物质与煤混烧燃烧特性研究   总被引:3,自引:1,他引:2  
利用TG-DTG热分析技术对煤、生物质及二者混合物的燃烧过程进行分析,研究了煤种、生物质、生物质添加比例、升温速率及氧气流量等因素对燃烧特性的影响.结果表明,生物质的着火特性、燃尽特性和燃烧性能明显优于原煤;添加生物质可以改善原煤的燃烧特性,随着生物质添加量的增加,燃烧性能改善越显著;升温速率增加,着火特性指数和综合燃烧特性指数升高,燃尽性能降低;增加氧气流量,可以显著改善燃料的燃烧性能.  相似文献   

2.
《中氮肥》2016,(1)
针对HT-L炉烧神木煤与晋城无烟煤混煤出现的渣口压差波动频繁(渣口堵塞)、粗渣中块状渣比例高、细渣含碳量高等不良情况,通过研究不同粒度混煤的密度、混煤各煤种在不同粒度范围的比例、不同粒度混煤的燃烧动力学、混煤粒度对结渣性的影响,得出HT-L炉烧混煤发生渣口压差波动(渣口堵塞)时,尽量采用辅助手段对HT-L炉的燃烧工况进行纠正,尽可能避免采用降低负荷、切气至火炬、停车等影响收益的处理手段,从源头上提高HT-L炉运行的经济效益与抗风险能力。  相似文献   

3.
煤化工气化工艺会产生大量气化细渣,其含碳量高、烧失量大,不符合建筑掺混原料国家标准和行业标准,产量巨大的气化细渣因缺乏有效的规模化消纳方式,成为现阶段制约煤化工企业可持续发展的重要因素。通过对一种低挥发分低热值燃料恒温预热-脱碳装置的预热脱碳工艺进行机理研究,利用热重试验平台进行恒温热重试验,对低挥发分、低热值燃料恒温预热-脱碳装置内部燃烧过程进行模拟,以对比分析不同预热温度、不同燃烧气氛下粒径分级气化细渣的燃烧特性。研究发现,通入氧气后,气化细渣样品迅速发生氧化反应,900℃、10%O_2下燃尽时间在6.6~9.4 min, 900℃、21%O_2下燃尽时间在3.7~5.6 min,因此在保证NO_x排放量在规定范围的条件下,可适当提高窑内燃烧区氧浓度以缩短燃尽时间。随预热温度的升高,同粒度分级的气化细渣样品的平均质量变化速率增大,燃尽时间缩短,预热温度的提高可改善气化细渣的燃尽特性,在设备安全运行下可适当提高燃烧区温度以更快燃尽。不同燃烧气氛、不同预热温度下,随气化细渣粒度增大,失重量增大,燃尽时间延长,平均质量变化速率递减,该"预热-脱碳装置"可根据物料粒度合理调整物料停留时间实现充分燃尽。  相似文献   

4.
在沉降炉上对无烟煤、贫煤、烟煤、褐煤以及不同配比(25%、50%、75%)混煤开展了过量空气系数对混煤燃尽特性影响的实验研究。结果表明,混煤燃烧中挥发分高的煤对挥发分低的煤存在促进和抑制2种交互作用。"炉外"掺烧方式下,低挥发分煤与高挥发分煤掺混时,抢风抑制作用表现明显;尤其是掺烧75%高挥发分煤时,抢风抑制作用最为显著;提高过量空气系数可以改善贫氧气氛,减弱混煤燃烧中的抢风抑制作用,提高混煤燃尽率。"炉内"掺烧方式下,过量空气系数的增加,交互作用减弱,各单煤的燃烧独立性增强,混煤燃尽率逐渐接近计算线性燃尽率。  相似文献   

5.
煤气化过程中产生大量含碳量较高的气化细渣,目前主要以填埋方式处理,不仅占用大量土地,污染土壤和水体,同时造成能源浪费,对气化细渣进行高效环保的资源化利用是目前的研究热点。气化细渣中的残碳与灰组分分离是实现其高值化、减量化、无害化利用的关键,煤气化细渣粒度特性分析表明,各粒级产品灰分基本随粒级减小呈增大趋势,通过分级工艺可实现碳灰的分离与富集。榆林煤气化细渣固定碳含量随粒级减小均呈下降趋势,各粒级产品中均含有较多的SiO_2、Al_2O_3、Fe_2O_3、CaO,微观形貌主要由多孔基体、不规则颗粒、黏附小颗粒及圆球颗粒组成。煤气化细渣孔隙结构发达,比表面积丰富,75μm粒级产品可直接作为优质的吸附材料;与气化燃料煤相比,气化细渣各粒级产品燃烧的特征温度均显著提高,从着火温度看,除45 um颗粒外,着火特征温度都高于作为参照的无烟煤;由于气化细渣中丰富孔隙率的存在,增大了颗粒与氧气的接触面积,使燃烧中后阶段燃烧峰值温度低于无烟煤,且燃尽温度明显低于无烟煤。  相似文献   

6.
为了掌握固体回收燃料(Solid Recovered Fuel, SRF)掺烧对污泥焚烧处置的热反应特性及烟气环境特性的影响,通过使用德国耐驰公司生产的热综合分析仪、SEM、XRD和GA-21plus烟气分析仪着重解析了不同掺烧比例时SRF与污泥混燃过程的热重规律、综合燃尽特征指数、结渣特性和烟气中NOx排放特性。结果表明:混烧过程存在明显的多峰失重现象,主要集中在192.3~645.3℃;SRF掺烧提高了燃料的失重速率,掺混比11%时,最大失重速率达0.14%/min,显著高于污泥单独焚烧的失重速率。随着SRF掺烧比提高,燃料的着火温度和燃尽温度降低,充分燃烧阶段向低温区域偏移。SRF掺混比为11%时,稳定燃烧性能指数和综合燃烧性能指数分别提升了1.38倍和1.17倍,改善了污泥单独焚烧时的着火特性。另外,SRF掺混后燃料灰熔融温度升高,灰分黏附程度降低,颗粒聚团强度降低,从而减弱了污泥单独焚烧时结渣情况,然而掺混燃烧导致烟气中NOx排放量增加。  相似文献   

7.
为有效地对气流床煤气化细渣进行资源化利用,研究了高活性神华煤和低活性宁夏煤掺混气化细渣的燃烧特性,探究了煤粉掺烧气化细渣燃烧反应的协同机理.结果表明:煤粉中气化细渣添加量的增加会导致燃烧过程灰渣出现不同程度的熔融现象,表明气化细渣内Ca和Mg等碱金属降低混合样品的灰熔融温度.在非等温及空气气氛的燃烧条件下,宁夏煤粉/气...  相似文献   

8.
生物质与兰炭掺混燃烧被认为是解决大量碳排放、NOx和SO2 等空气污染相关问题的潜在途径。分别通过热重试验和滴管炉试验研究纯兰炭、兰炭与生物质混合物空气分级燃烧特性,分析掺混比对混合燃料着火温度、燃尽温度、结渣特性、沾污特性及燃烧特性指数的影响,确定适宜空气分级燃烧比例、最佳燃烧温度和最佳掺混比。结果表明,掺烧生物质可有效降低混合燃料着火点,其着火点由474℃降至300℃,掺烧生物质后燃尽温度略降低,兰炭掺混生物质燃烧未明显提高燃烧特性指数;兰炭粉掺混生物质燃烧有高灰分沉积倾向,结渣倾向小。相比掺烧前,不同温度掺烧生物质后出口NOx和SO2质量浓度均较低,1 200℃出口NOx和SO2质量浓度降幅均较高,分别达87.27%和80.2%。未空气分级时,综合出口NOx等参数得出,适宜生物质质量分数为30%~40%,最佳燃烧温度1 200~1 300℃。分级燃烧时,生物质质量分数30%的NOx初始排放随温度变化平缓,稳...  相似文献   

9.
利用燃烧指数分析生物质型煤的燃烧特性   总被引:1,自引:0,他引:1  
分别选用焦作无烟煤、山西烟煤、陕西神木烟煤、平顶山烟煤四种原煤和其生物质型煤,通过不同煤种原煤和生物质型煤的热重分析实验,计算原煤和生物质型煤的着火、稳定燃烧和燃尽特性指数.分析得出:灰分和挥发分是影响生物质型煤燃烧特性及其燃烧特点的主要因素.  相似文献   

10.
针对气流床气化细灰的理化特性及常规锅炉掺烧方式无法有效利用气化细灰中的残炭的技术现状,中国科学院工程热物理研究所研发的气化残炭燃烧技术可作为气化细灰燃烧再利用的技术,该技术中试试验可将气化细粉灰含碳量从约40%降至0.88%,燃烧效率达到98.6%,工业规模燃烧效率达到99.18%;使用该技术处理气化细灰制取的蒸汽成本为55.08元/t,经济效益可达1 575.6万元/a。  相似文献   

11.
在分析并借鉴气化渣、煤泥利用探索经验基础上,研究分析了气化渣的理化特性及入炉燃烧的可行性。通过流变性试验,确定了气化渣与煤泥以质量比1∶1(含水质量分数30%±2%)混合成浆后通过煤泥泵进行输送。气化渣、煤泥与原煤掺烧的综合发热量可满足锅炉设计的燃料要求,对锅炉效率及其安全稳定运行基本没有影响,可实现煤炭资源的综合利用。该项目实施后,不到2年即可收回投资,经济效益显著。  相似文献   

12.
旋流对冲燃烧锅炉在燃用劣质煤种时,由于劣质煤着火困难,会造成主燃区温度较低,引起炉内燃烧不稳定,并且水冷壁经常发生高温腐蚀和结渣,上部对流受热面超温,飞灰含碳量也增加,锅炉热效率明显降低,是目前电站锅炉运行面临的一大难题。针对某1 000 MW旋流对冲燃烧锅炉,采用CFD方法研究了锅炉燃用劣质煤种时炉内燃烧组织的分布特性,并将结果与设计煤种进行了对比分析。结果表明:与设计煤种相比,劣质煤灰分高,热值低,原燃烧器的分级配风方式不利于劣质煤粉及时着火,燃点推迟,炉膛水平截面温度分布不均匀,四周水冷壁中心附近出现高温区和高浓度CO,炉膛中心高温区减小,火焰中心上移,因此对流受热面附近出现高温区域,这些会导致水冷壁高温腐蚀,对流受热面超温问题发生,同时出口烟温也会增加,即锅炉效率降低。另外,由于分级燃烧组织的不合理,炉膛出口NOx生成量也明显增加。在实际运行中,可以采用混煤掺烧的方式,改善劣质煤种的燃烧特性,从而提高锅炉燃烧稳定性;其次,可以对原旋流燃烧器进行改造优化,如适当减小一次风速,或者在水冷壁中心增设墙式风,保证劣质煤粉有足够的时间预热并能够及时与二次风混合,稳定着火,提高锅炉燃用劣质煤种的能力。  相似文献   

13.
为了研究塔式锅炉掺烧神华煤的适应性,采用预混和分磨2种掺烧方式,不断提高神华煤掺烧比例,评估锅炉运行的安全性、经济性和环保性。试验结果表明,随着神华煤掺烧比例的升高,灰渣含碳量降低,锅炉效率升高。神华煤预混掺烧比例低于75%时,锅炉汽水参数正常,锅炉没有出现结渣现象,锅炉对掺配煤种具有良好的适应性;神华煤掺烧比例高于75%时,锅炉局部出现结渣。分磨掺烧最高掺烧比例达到60%,锅炉局部出现结渣,并且在相同掺烧比例下,分磨掺烧的锅炉效率高于预混掺烧。长期高比例掺烧神华煤时,应注意加强燃烧器区域和一级过热器区域的监测,避免形成大渣块。  相似文献   

14.
神华煤极易着火、燃尽,燃烧性能优良,且煤中氮、硫含量低,使神华煤在低氧和低氮结合的燃烧条件下,保持了较高的燃尽性能和较一般烟煤偏低的NOx生成量。神华煤的低硫特性保证了在贫氧(没有足够的氧气保证充分燃烧)条件下,炉内H2S含量不是太高,没有明显的高温腐蚀倾向。采用低氮燃烧后,燃烧器区燃烧强度降低,缓解了炉内结渣,部分锅炉屏区的结渣也有所缓解,提高了具有严重结渣倾向的神华煤的掺烧比例。神华煤采用低氧燃烧和低氮燃烧相结合的技术,保证了锅炉的燃烧经济性、安全性和低NOx生成特性,指标明显优于国内其他典型烟煤。  相似文献   

15.
利用STA-449C同步热分析,对比研究了高碳灰与三种典型无烟煤的着火与燃尽特性。根据热分析曲线,分别计算出了高碳灰和无烟煤的着火与可燃性指数、综合燃烧特性指数。试验结果表明:高碳灰以固定碳为主,灰分含量高,干燥无灰基挥发分极低,其着火燃烧特性与无烟煤存在显著差异。与无烟煤相比较,高碳灰着火温度与燃尽温度均为最高,可燃质燃烧速率峰值与平均燃烧速度均为最低,计算结果显示高碳灰可燃性指数与综合燃烧特性指数指标均明显低于无烟煤。通过试验基本掌握了高碳灰着火燃烧与综合燃烧特性特性,为燃煤电站锅炉高碳灰资源化利用以及与无烟煤优化掺烧提供依据。  相似文献   

16.
利用TG/DTA 6300型热分析仪研究了宁夏石沟驿煤的气化残炭的燃烧特性,从着火特性、燃尽特性和稳燃特性三个方面分析了升温速率、粒径和氧气浓度对气化残炭燃烧特性的影响,并采用正交实验分析了升温速率、粒径和氧气浓度三个因素对气化残炭燃烧特性影响的耦合作用.实验结果表明,提高升温速率可以改善气化残炭的燃尽特性;粒径的减小有助于气化残炭的着火;氧气浓度的增加对改善气化残炭燃烧特性有明显的作用,但这种改善效果随氧气浓度的增加而减弱;升温速率对气化残炭的着火特性影响最大,而氧气浓度对气化残炭的燃尽特性和稳燃特性影响最大.  相似文献   

17.
利用热重分析仪研究生石灰对褐煤燃烧特性的影响,采用了描述煤燃烧着火及燃尽性能的燃烧特性指数S,可燃性指数C和着火稳燃特性综合判别指标Rw,并根据热动力学方法计算各过程的热动力学参数,即活化能E和频率因子A.结果表明,在加入生石灰后,褐煤燃烧明显分为两个阶段,并且随着生石灰混合比例的增加,前期的燃烧强度逐渐减弱,后期的燃烧强度逐渐增强.当生石灰的添加量在20%左右时,试样的活化能较原煤略有降低,且最大燃烧速率比原煤快,但随着生石灰添加量继续增加,燃尽性能变差.  相似文献   

18.
油页岩经低温干馏可以得到页岩油,因生产工艺限制,干馏炉无法使用粒径12 mm以下的油页岩,同时会产生大量副产品(页岩半焦)。为提高副产品的利用能力,实现资源利用最大化。通过在1 MW_(th)CFB燃烧试验台对小颗粒页岩及页岩半焦进行试烧试验,研究小颗粒页岩及页岩半焦的理化特性、着火特性、燃尽特性、结焦特性。试验结果表明,控制床温在720~850℃内,由油页岩小颗粒和半焦掺混而成的设计燃料在试验台采用CFB方式能够稳定燃烧,试验各工况灰渣含碳量均低于1.81%,试验燃料较易燃尽。CFB锅炉适合油页岩小颗粒与半焦掺烧利用,且燃烧效率高,燃烧稳定性较好。  相似文献   

19.
为掌握富氧燃烧对不同煤种燃烧性能的影响,在煤粉气流着火温度试验炉和改造后的一维火焰燃烧试验台架上进行国内典型烟煤和贫煤在不同O_2体积分数下的煤粉气流着火温度、一维火焰炉燃尽率、结渣性能测试。研究结果表明,随着O_2体积分数的增加,不同煤种均呈现煤粉气流着火温度下降、燃尽率上升的规律,表明O_2体积分数的增加可以提高燃煤的燃烧稳定性和经济性,同时随着O_2体积分数的增加,炉膛燃烧尖峰温度提前并升高,燃煤的结渣性能加重。需要注意的是不同煤种的燃烧性能受O_2体积分数的影响程度不同,具体煤种需进行相应的富氧燃烧试验确定。  相似文献   

20.
为深入了解气化细渣的燃烧特性,将气化细渣(BL)筛分,得到BL1,BL2,BL3,借助XRD和SEM-EDS等手段探究了其残炭的形态,利用热重分析法分析了其燃烧特性、混煤燃烧特性及反应动力学.结果 表明:BL中的残炭多分布在大粒径颗粒中,BL1,BL2,BL3中的残炭形态对应着其在气化炉内经历的不同气化历程;热重对比分...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号