首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, a comprehensive study on the polyol synthesis of platinum supported on reduced graphene oxide (Pt/rGO) catalysts, including both ex-situ and in-situ characterizations of the prepared Pt/rGO catalysts, was performed. The polyol synthesis was studied considering the influence of the platinum precursor, oxidation level of graphite oxide and pH of reaction medium. The as-prepared catalysts were analyzed using thermo-gravimetric (TG) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and cyclic voltammetry (CV). The best results in terms of platinum particle size and distribution were obtained when the synthesis was performed in acidic medium, using chloroplatinic acid as precursor and using graphene oxide with high oxidation level. The most promising graphene-supported catalyst was used to prepare a polymer electrolyte membrane fuel cell electrode. The membrane electrode assembly (MEA) prepared with graphene-based electrode was compared with a MEA prepared with catalyst based on commercial platinum supported in carbon black (Pt/C). Single cell characterization included polarization curves and in-situ electrochemical impedance spectroscopy (EIS). The graphene-based electrode presented promising albeit unstable electrochemical performance due to water management issues. Additionally, EIS measurements revealed that the MEA made with Pt/rGO catalyst presented a lower mass transport resistance than the commercial Pt/C.  相似文献   

2.
This study shows the influence of the Pt percentage in Pt catalysts (Pt/C) on their application in Direct Glycerol Fuel Cells (DGFC). Catalysts with 20, 30, 40 and 60% Pt were prepared by formic acid reduction. X-Ray Diffraction (XRD) confirmed the formation of Pt fcc nanocrystals (with average sizes between 3 and 4 nm). Thermogravimetric analysis (TGA) corroborated the Pt loadings and the Transmission Electron Microscopy (TEM) images show a homogeneous distribution of the Pt nanoparticles, with larger particles at higher Pt percentages. Electrochemical measurements reveal that higher Pt percentages promote the activity of the glycerol electroxidation reaction, resulting in lower onset potentials, higher current densities and reduced poisoning of the Pt surface. Single cell tests confirm these results, with greater maximum power density at higher Pt percentages, although the glycerol crossover effect starts to become significant in the 60% Pt/C catalyst, owing to the reduced thickness of this catalytic layer. A final product selectivity analysis indicates that tartronate is the preferential glycerol electroxidation product, along with glycerate and oxalate in lower proportions, with minor amounts of glycolate and mesoxalate. In general, a thicker catalytic layer is associated with the formation of more oxidized products.  相似文献   

3.
Electrodes for proton exchange membrane fuel cells (PEMFC) have been prepared by the electrodeposition method. For this task, the electrodeposition of platinum is carried out on a carbon black substrate impregnated with an ionomer, proton conducting, medium. Before electrodeposition, the substrate is submitted to an activation process to increase the hydrophilic character of the surface to a few microns depth.Electrodeposition of platinum takes place inside the generated surface hydrophilic layer, resulting in a continuous phase covering totally or partially carbon substrate grains. Cross sectional images show a decay profile of platinum towards the interior of the substrate, reflecting a deposition process limited by diffusion of PtCl62− through the porous substrate. Electrodes with different platinum loads have been prepared, and membrane electrode assemblies (MEA) have been mounted with the electrodeposited electrodes as cathode and other standard components (commercial anode and NafionR 117 membrane). The electrochemically active surface area determined from hydrogen underpotential deposition charge, is lower on the electrodeposited electrodes than on standard electrodes. However, single cell testing shows higher mass specific activity on electrodeposited cathodes with low and intermediate Pt load (below 0.05 mg Pt cm−2).  相似文献   

4.
Carbon (Vulcan XC-72, Cobat Corp.) is pretreated using acetic acid (HAC) before the Pt deposition by microwave assisted glycol method. TEM and XRD results indicate that 3 nm Pt nano-particles are uniformly dispersed on the surface of modified XC-72. In order to examine the interaction between Pt nano-particles and carbon, Pt/C-HAC and commercial Pt/C (Johnson Matthey Corp.) are calcined at 500 °C for 2 h under nitrogen atmosphere. The average Pt particle size of Pt/C-HAC after calcination is only 10–12 nm in diameter while commercial Pt particles grow up to 25–35 nm with a broad size distribution. Meanwhile, electrochemical studies of Pt/C-HAC reveal higher activity and stability for both methanol oxidation and oxygen reduction than that of Pt/C-JM. The pore structure and surface composition are investigated by BET and XPS, which implies that much microporous structure and carbonyl functional groups on carbon surface are obtained after HAC treatment. The high catalytic performance and stability might mainly be due to the strong interaction between Pt nano-particles and carbon by carbonyl functional groups. Therefore, HAC treatment is proved to be a facile and effective method for carbon as the support for Pt as fuel cell catalyst.  相似文献   

5.
Commercially available graphitized carbon nanofibers and multi-walled carbon nanotubes, two carbon materials with very different structure, have been functionalized in a nitric–sulfuric acid mixture. Further on, the materials have been platinized by a microwave assisted polyol method. The relative degree of graphitization has been estimated by means of Raman spectroscopy and X-ray diffraction while the relative concentration of oxygen containing groups has been estimated by X-ray photoelectron spectroscopy, which resulted in a graphitic character trend: Pt/GNF > Pt/F-GNF ? Pt/MWCNT > Pt/F-MWCNT. Transmission electron microscopy showed that the Pt particle size is around 3 nm for all samples, which was similar to the crystallite size obtained by X-ray diffraction. The activity towards electrochemical reduction of oxygen has been quantified using the thin-film rotating disk electrode, which has shown that all the samples have a better activity than the commercially available electrocatalysts. The trend obtained for the graphitic character maintained for the electrochemical activity, while the reverse trend has been obtained for the accelerated ageing test. Long-term potential cycling has demonstrated that the functionalization improves the stability for multi-walled carbon nanotubes, at the cost of decreased activity.  相似文献   

6.
In this study, a novel core-shell structured Pd3Fe@Pt/C electrocatalyst, which is based on Pt deposited onto carbon supported Pd3Fe nanoparticles, is prepared for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). The carbon supported Pd3Fe nanoparticles act as seeds to guide the growth of Pt. The formation of the core-shell structured Pd3Fe@Pt/C is confirmed by transmission electron microscopy (TEM), X-ray diffraction (XRD) and electrochemical characterization. The higher surface area of the synthesized catalyst suggests that the utilization of Pt in the Pd3Fe@Pt/C catalyst is higher than that in Pt/C. Furthermore, better electrocatalytic performance than that of Pt/C and Pd3Fe/C catalyst is observed in the ORR which follows a four-electron path. Consequently, the results indicate that the Pd3Fe@Pt/C catalyst could be used as a more economically viable alternative for the ORR of PEMFCs.  相似文献   

7.
Activated carbons have been prepared by phosphoric acid activation of lignocellulosic precursors, an industrial method, followed by heat treatment in ammonia. Thus, a cost-effective, scalable and metal-free electrocatalyst was developed for use in oxygen reduction reaction (ORR) at fuel cell cathodes. The physicochemical properties of the activated carbons have been analyzed by elemental analysis, X-ray photoelectron spectroscopy, X-ray diffraction, and nitrogen adsorption. The ORR electrocatalytic performances of the activated carbons have been investigated by cyclic voltammetry and linear sweep voltammetry in an alkaline electrolyte. The results showed that phosphorus-containing groups are key to endowing phosphoric-acid-activated carbons with comparable electrocatalytic activity to that of commercial Pt/C. This was because these phosphorus-containing groups facilitated the formation of both nitrogen-containing groups and defects in the microstructure. Besides, heat treatment of phosphoric-acid-activated carbons in ammonia produced a highly developed mesopore structure and thus kinetically facilitated the ORR.  相似文献   

8.
Direct ammonia fuel cell (DAFC) performance was investigated using as anode PtIr/C electrocatalysts (Pt:Ir atomic ratios of 50:50, 70:30, 80:20 and 90:10) prepared by the borohydride reduction process and NH4OH 1.0, 3.0 and 5.0 mol L−1 in KOH 1.0 mol L−1 as fuel. X-ray analyses of PtIr/C electrocatalysts suggested the formation of PtIr alloy and the transmission electron micrographs showed the average particle diameters between 4.5 and 6.0 nm. Using PtIr/C 50:50 electrocatalyst and NH4OH 5.0 mol L−1 in KOH 1.0 mol L−1 at 40 °C a maximum power density was 48% and 70% higher than that obtained using Pt/C and Ir/C electrocatalysts, respectively. The increase of electroactivity using PtIr/C electrocatalysts might be related to a decrease of poisoning on catalyst surface by Nads species and to an improved kinetic for ammonia oxidation reaction.  相似文献   

9.
A solution-phase synthesis method was studied to prepare carbon supported Pt-Co alloy catalysts. The organic precursors of Pt acetylacetonate and Co acetylacetonate were reduced in a high boiling point solvent of octyl ether in the presence of oleic acid (OAc) and oleylamine (OAm) to produce fine Pt-Co nanoparticles, which were subsequently deposited on carbon support to obtain Pt-Co/C catalysts. Thermogravimetric analysis suggests that the stabilizers (OAc and OAm) can be removed by copious ethanol washing and subsequent moderate temperature heat-treatment (250 °C, under Argon atmosphere). X-ray diffraction patterns indicate that the average particle size is around 2.3 nm, and the lattice parameter is 3.868 Å for the heat-treated Pt-Co/C (40 wt%). Transmission electron microscopy images show very small Pt-Co alloy nanoparticles homogeneously dispersed on the carbon support with a particle size distribution of 2-4 nm for all Pt-Co/C samples. The elements composition of Pt and Co in the final Pt-Co/C catalyst can be well controlled, as evidenced by inductively coupled plasma atomic emission spectroscopy and energy dispersive spectroscopy analyses. Proton exchange membrane fuel cell tests show the heat-treated Pt-Co/C cathode catalyst has higher mass activity of oxygen reduction reaction than Pt/C at an operation voltage of 0.9 V, this can be attributed to its smaller particle size and reduced lattice parameter.  相似文献   

10.
A thermal method of synthesis and fixation of Pt nanoparticles (Pt NPs) on carbon paper is proposed in this paper. Carbon paper was coated with H2PtCl6 by simple immersion in an ethanol solution containing the Pt precursor. Thereafter, H2PtCl6 was decomposed in inert atmosphere into Pt NPs by applying a temperature of 600 °C. Formed Pt NPs were able to oxidize the surrounding carbon fiber surface. This local thermal oxidation of carbon promoted the generation of nano-roughness and Pt NPs were embedded in the carbon fiber, thus favoring their fixation on carbon paper. Pt load can be easily controlled by the number of coating processes applied. The proposed method combines the advantage of achieving small size nanoparticles (5–10 nm) with enhanced fixation of Pt NPs when compared with electrochemical synthesis. The optimal number of coatings applied was three, which produced a complete coverage of carbon paper surface (with a Pt load of 0.18 mg cm?2).  相似文献   

11.
Carbon-supported catalysts containing platinum and molybdenum oxide are prepared by thermal decomposition of polymeric precursors. The PtyMozOx/C materials are characterized by energy dispersive X-ray spectroscopy, transmission electron microscopy, and X-ray diffraction. The catalysts present a well-controlled stoichiometry and nanometric particles. Molybdenum is present mainly as the MoO3 orthorhombic structure, and no Pt alloys are detected. The voltammetric behavior of the electrodes is investigated; a correlation with literature results for PtMo/C catalysts prepared by other methods is established. The formation of soluble species and the aging effect are discussed.  相似文献   

12.
This work aims at enhancing Pt utilization in electrocatalysts by covering of preformed silica nanoparticles. Pt/C electrocatalysts were prepared by reductive deposition of Pt by citrate at moderate temperatures on silica nanoparticles with varying atomic silica to Pt ratios (1.7:1 and 3.3:1) to study the effects of silica to Pt ratio. Considerable voidages were created by inter-situated 10–20 nm silica nanoparticles between support carbon particulates to facilitate mass transfer of reactants and products. This particular method of catalyst preparation increases the Pt metal utilization, and generates a large amount of accessible voidage in the interpenetrating particle network of carbon and silica to support the facile transport of reactants and products. Electrochemical hydrogen adsorption/desorption has shown an increase in electrochemically active surface area by this approach. Methanol electro-oxidation was used as a test reaction to evaluate the catalytic activity. It was found that the Pt catalyst modified with silica at silica:Pt = 1.7:1 atomic ratio was more active than a catalyst prepared when silica to Pt ratio increased to 3.3:1.  相似文献   

13.
To investigate the effect of carbon support adding sequence on Pt particle sizes and Pt utilizations during the polyol process of the electrocatalyst preparation, a series of Pt/C electrocatalysts (different Pt loadings, two kinds of carbon supports−Vulcan XC and Black Pearls 2000) were prepared, namely, Pt/C-a (first reduced Pt ions to form Pt nanoparticles, which subsequently deposited on carbon supports) and Pt/C-b (Pt precursors were first impregnated with carbon supports, then reduced to Pt nanoparticles). The physical properties of the electrocatalysts were characterized by X-ray diffraction, transmission electron microscopy and nitrogen adsorption. The catalytic activities of the electrocatalysts toward the oxygen reduction reaction and the methanol oxidation reaction were characterized by potentiodynamic measurements. The results show that the carbon support adding sequence has significant effects on the Pt particle sizes, especially for the carbon supports with large amount of micropores, as a result, leading to different catalytic activities.  相似文献   

14.
Platinum electrocatalysts deposited on multi-walled carbon nanotubes (CNT) with high loading were prepared using a microwave-assisted polyol reduction method and employed for direct methanol fuel cells (DMFC). A zwitterionic surfactant was used as a stabilizing agent for the formation of Pt nanoparticles. A uniform and narrow size distribution of highly dispersed Pt nanoparticles could be achieved by adjusting the weight ratio of surfactant to Pt precursor allowing for Pt loadings of up to 60 wt%. The heating time and the temperature for the ethylene glycol (EG) oxidation were found to be the key factors for depositing Pt nanoparticles homogeneously on carbon nanotubes. The smallest average particle diameter of 1.8 nm was obtained through microwave heating to 140 °C in 50 s. The structure, amount and morphology of the electrocatalysts were characterized with XRD, TGA, and TEM, respectively. Single cell DMFC measurements were performed in a membrane-electrode assembly (MEA) with 5 cm2 active area and very low catalyst loading (0.25 mg cm−2 of noble metal on both anode and cathode). The DMFC performance of the surfactant stabilized cathode catalyst obtained by the new method described here revealed that the power density was three times higher than for a commercial catalyst used for comparison and two times higher than for an unstabilized CNT supported catalyst.  相似文献   

15.
The degradation mechanisms of Pt nanoparticles supported on Carbon have been characterized during oxygen reduction reaction (ORR) conditions using IL-TEM. A TEM grid is used as the sole working electrode allowing a direct correlation between the electrochemical response and the TEM analysis. We mainly observe a decrease in nanoparticle size with some particle disappearance and some particle sintering after potential cycling simulating the start-up and shut-down of a fuel cell. The observation of nanoparticles with reduced particle size provides evidence that dissolution phenomena are the main cause of degradation in Pt/C electrocatalysts, under ORR conditions.  相似文献   

16.
Pt/C/MnO2 hybrid catalysts were prepared by a wet chemical method. Pt/C electrocatalysts were treated with manganese sulfate monohydrate (MnSO4·H2O) and sodium persulfate (Na2S2O8) to produce MnO2. The presence of MnO2 was confirmed by FTIR spectroscopy. Rotating ring–disk electrode (RRDE) experiments were performed on electrodes prepared using the hybrid electrocatalysts to estimate the amount of hydrogen peroxide (H2O2) formed during the oxygen reduction reaction (ORR) as a function of MnO2 content. Pt/C/MnO2 (5% by weight of MnO2) hybrid electrocatalysts produced 50% less hydrogen peroxide than the baseline Pt/C electrocatalyst. The hybrid electrocatalysts were used to prepare membrane electrode assemblies that were tested at 90 °C and 50% RH at open circuit with pure hydrogen as fuel and air as the oxidant. The fluoride ion concentration was measured using an ion selective electrode. The concentration of F in the anode condensate over 24 h was found to be reduced by a factor of 3–4 when Pt/C/MnO2 replaced Pt/C as the catalyst. Through cyclic voltammetry and RRDE kinetic studies, the lower ORR activity of the acid treated hybrid electrocatalysts was attributed to catalyst treatment with acid during MnO2 introduction. The activity of the hybrid catalyst was improved by switching to a water-based synthesis.  相似文献   

17.
Understanding how the pathway of formic acid electrooxidation depends on the composition and structure of Pt or Pd atoms on the surface of Pd- or Pt-based nanoparticles is important for designing catalysts aiming toward active, selective, stable, and low-cost. This work reports new findings of the investigation of submonolayer Pt decorated PdAu/C nanocatalysts (donated as Pt-PdAu/C) for formic acid electrooxidation. The Pt-PdAu/C are synthesized via a spontaneous displacement reaction and characterized by an array of analytical techniques including transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The electrocatalytic activity is examined using cyclic voltammetric and chronoamperometric measurements. The results show that the as-prepared Pt-PdAu/C with an optimal Pt:Pd atomic ratio of 1:100 exhibits enhanced electrocatalytic activity for formic acid electrooxidation compared with the PdAu/C and commercial the Pt/C catalysts. The oxidation potential on the Pt-PdAu/C shifts negatively by about 200 mV compared with that of the PdAu/C. The enhanced electrocatalytic activity and stability are attributed to the replacement of the Pd atom layer by Pt atoms, which significantly reduces the presence of the so-called "three neighboring site" of Pd or Pt atoms in the Pt-PdAu/C to efficiently suppress CO formation. The enhanced activity/stability and ultralow Pt loading of the Pt-PdAu/C have implications to the development of commercially-viable catalysts for application in direct formic acid fuel cells and catalysis.  相似文献   

18.
The direct ethanol fuel cell has been attracting increased attention due to its safety and the wider availability of ethanol as compared with methanol. The present work investigates the anodic oxidation of ethanol on a core-shell structured Ru@PtPd/C catalyst in alkaline media. The catalyst shows high activity toward the anodic oxidation of ethanol; with 18 wt.% ruthenium as the core and 12 wt.% PtPd (Pt:Pd = 1:0.2) as the active shell, its activity in terms of PtPd loading is 1.3, 3, 1.4, and 2.0 times as high as that of PtPd/C, PtRu/C, Pd/C, and Pt/C, respectively, indicating high utilization of Pt and Pd. The ratio of forward peak current density to backward peak current density (If/Ib) reaches 1.5, which is 1.9 times that of PtPd/C catalyst, revealing high poisoning tolerance to the intermediates in ethanol electrooxidation. In addition, the stability of Ru@PtPd/C is higher than that of Pt/C and PtPd/C, as evidenced by chronoamperometric evaluations. The catalyst is extensively characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy. The core-shell structure of the catalyst is revealed by XRD and TEM.  相似文献   

19.
J.B. Xu  T.S. Zhao   《Journal of power sources》2010,195(4):1071-1075
In synthesizing carbon nanotubes supported catalysts, a significant challenge is how to deposit metal nanoparticles uniformly on the surface of carbon nanotubes due to the inherent inertness of carbon nanotube walls. This study reports a facile procedure using N,N-dimethylformamide as a dispersant, ligand and reductant, with which Pt nanoparticles can be deposited uniformly on pristine carbon nanotubes. X-ray photoelectron spectroscopy measurements reveal that metallic Pt nanoparticles are successfully prepared with this method. Transmission electron microscopy and X-ray diffraction analyses confirm the formation of face-centered cubic crystal Pt particles with a size that ranges from 2.0 to 4.0 nm. The support-dependent catalytic properties of the prepared Pt catalyst are characterized by cyclic voltammetric studies of the formic acid electro-oxidation reaction. The results show that a pristine carbon nanotubes supported Pt catalyst has a higher catalytic activity than both carbon powder and modified carbon nanotubes supported catalysts.  相似文献   

20.
Durability is one of the most important characteristics of electrocatalysts used in low-temperature fuel cells with a proton exchange membrane. The degradation degree of deposited electrocatalysts containing platinum and platinum-copper nanoparticles with Pt-loading of about 20% by weight was assessed by voltammetric stress-testing, which corresponded to different mechanisms of degradation. The differences in the PtCu nanoparticles architecture, caused by the peculiarities in their synthesis, affect the catalysts stability and their composition change due to the stress tests.It has been shown that at the close values of Pt-loading and electrochemically active surface area (ESA), the bimetallic catalysts on the Vulcan XC72 carbon carrier demonstrate significantly higher stability compared to commercial Pt/C catalysts. In this case, the “gradient” catalyst obtained by successive multi-stage copper and platinum deposition showed the highest residual activity in ORR, as well as resistance to stress testing and to the copper selective dissolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号