首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Drying Technology》2013,31(8):1471-1490
Abstract

This article reports on a study of developing a novel residential clothes dryer using waste heat rejected from a room air conditioner. An experimental rig has been set up and extensive experimental work under various operating conditions carried out. A simplified mathematical expression (SME) for the clothes drying process using rejected waste heat from a RAC has also been developed and validated by the experimental results. The study results showed that in tropical or sub-tropical regions, where air conditioning is operated for at least 7–8 months in a year, the use of waster heat from an air cooled RAC can achieve both effective clothes drying and energy use reduction.  相似文献   

2.
In present work, a closed-type clothes dryer with thermoelectric elements was developed. The looped air circulation was designed to simultaneously recycle waste heat and enhance dryer performance. A mathematical model of heat transfer, based on one-dimensional treatment of thermal and electric power, is conducted. The cooling and heating productions are both correlated in terms of electric resistance, thermal conductivity, and electric current. Experimental investigation on drying of clothes has been attempted, covering the drying air temperature, initial-input electric power, and total weight of wet clothes, with drying rate and specific moisture extraction rate as evaluating indexes. Generally, the drying rate was found to increase first and decrease afterwards as time decayed. Analytical and experimental results demonstrate that optimal performance of the thermoelectric dryer strongly depends on intensities of these operating parameters.  相似文献   

3.
Improving the energy efficiency of clothes dryers has been the subject of numerous investigations. However, to date the clothes drying process has not been thoroughly tested or analyzed in a comprehensive study. Many of the techniques that have been proposed to improve energy efficiency add to dryer cost or are environmentally unacceptable. In the present study, a commercial Frigidaire dryer was instrumented and evaluated for energy performance by changing operating parameters including heater power, fan speed, drum speed, weight, and initial moisture content of the clothes. The total drying time and energy consumption was monitored as well as the effect of air leakage into the drum. The experimental results from 32 runs of the dryer were evaluated. The results from these tests are discussed and techniques are proposed in an attempt to improve the energy efficiency of this unit.  相似文献   

4.
A comparison was made between alternate air conditioning methods used to dry large round forage bales. Energy consumption durin drying and the final nutritional qualit of the bales were measured durin ti% study. The methods used to increase tge drying potential of the air incfuded using a desiccant to dehumidify the drying air; a gasoline engine to drive the fan and heat the drying air and the use of direct electric heat to increase the temperature of the dr ing air.

The results from the study indicate that the energy consumption was least with the use of a desiccant but the regeneration ma only be economically feasible where waste heat is available to provide tKe enery The gasoline engine was less efficient than the application of electric;. No difference in the nutritional quality of the forage due to heat damage during the drying process was noted.  相似文献   

5.
ABSTRACT

A comparison was made between alternate air conditioning methods used to dry large round forage bales. Energy consumption durin drying and the final nutritional qualit of the bales were measured durin ti% study. The methods used to increase tge drying potential of the air incfuded using a desiccant to dehumidify the drying air; a gasoline engine to drive the fan and heat the drying air and the use of direct electric heat to increase the temperature of the dr ing air.

The results from the study indicate that the energy consumption was least with the use of a desiccant but the regeneration ma only be economically feasible where waste heat is available to provide tKe enery The gasoline engine was less efficient than the application of electric;. No difference in the nutritional quality of the forage due to heat damage during the drying process was noted.  相似文献   

6.
An experimental study of the drying process using the prototype of a venting type dryer is presented. The machine has two motors: one for moving the drum and another for moving the turbine; electrical resistance is used as the heat source. The prototype operates under controlled test conditions in accordance with the Department of Energy (DOE) Standard 10 CFR 430. The aim of this study is to statistically determine the impact of the main factors and their interactions involved in the drying of clothing from a complete design of experiments. Statistical analyses for drying time and the energy consumption are determined from the studied factors. The factors studied are turbine motor frequency (to admit and expel air from the dryer); power supplied to the electric coil, amount and moisture of clothing and restriction of exhaust duct the gases. The results show that all of the studied factors and four of the interactions are statistically significant in the drying of clothes. The shortest drying time and the lowest energy consumption were obtained with the higher level of restriction and the lower initial moisture of clothing.  相似文献   

7.
In earlier studies we have shown by simulation and experimental studies that the proposed chemical heat pump (CHP) unit can be used to recover waste heat from dryers and reuse it by storing and releasing heat with upgrading the temperature or by dehumidification. However, the final thermal energy production efficiency of the CHP for drying was found to be low. In this paper we present experimental results to demonstrate the potential for improved heat-recovery/storage and the heat-release/production of hot dry air for batch drying applications using the heat enhancement mode of the CHP. A new laboratory scale experimental CHP dryer system was built utilizing the calcium oxide/calcium hydroxide hydration/dehydration reversible reaction. The aim of this study is to improve the efficiencies of the heat recovery from heat source in the heat-storage step and the hot dry air production in the heat-release step of the CHP for heating up the air to around 100°C. The results of this experimental study utilizing a new reactor design showed that the shallow reactor/heat exchanger could accomplish 94% chemical heat storage and produce 100°C air at better than 75% efficiency for the reaction heat by controlling the preheating condition. The reaction conversion reached 90% in these experiments. The proposed CHP-assisted convective dryer system is found to be energy-efficient over a wide temperature range of industrial interest.  相似文献   

8.
Low-Temperature Drying Using a Versatile Heat Pump Dehumidifier   总被引:2,自引:0,他引:2  
A drying system incorporating a commercial 2.3 kW heat pump dehumidifier was designed and constructed. The HPD was equipped with an external water-cooled condenser that rejected excess heat out of the system. The design of the system allowed for conducting drying with recirculation of air as well as use of electrical heaters. In an open mode, the drying could be carried out simultaneously with room dehumidification and water heating in the secondary condenser. Drying experiments were conducted with apple and comparisons were made between HPD assisted drying (partial and complete) and hot air drying (at 45 and 65°C). The HPD dried fruit exhibited better rehydration properties than the hot air dried samples. Water activity of the HPD dried samples was noticeably lower than that of the hot air dried samples at the same water content, indicating that the residual moisture was probably held under higher tension in the former. In terms of energy consumption, the process of HPD assisted drying is more expensive as much of the energy input is rejected at the secondary condenser as excess heat.  相似文献   

9.
The present study proposes a rationally based heat pump clothes dryer model which is capable of handling transient behaviors of both air-side and refrigerant side. The model can take into account the geometrical variation of the heat exchangers. Yet the proposed model is free from extra constraints that were normally imposed by previous studies. The simulation shows that there exist three stages in a typical drying process, including a preheat stage, followed by a constant evaporation stage, and finally a falling drying rate period. The calculation indicates that the variation of the clothes temperature and the system suction/discharge pressure show an appreciable rise in the first stage, remain nearly unchanged at the second stage, and increase again at the final stage of drying process. Also, the corresponding maximum specific moisture extraction rate (SMER) peaks at the end of the second stage while the corresponding coefficient of performance (COP) drops continuously. The simulation also indicates that increasing the air volumetric flowrate yields a lower discharge/suction pressure, a higher COP value, and a shorter drying time. The results also suggested that a good strategy to maximize COP is initiated by a low volumetric rate during the preheat stage, increasing it during the second stage and lowering it to an intermediate flowrate at the end of the drying period. Increasing heat exchanger size, either by increasing heat exchanger width or the number of tube row, results in a lower suction/discharge pressure and a shorter drying time. Although both approaches adopt larger surface area to promote overall performance, it is found that increasing the width of heat exchanger yields more effective results.  相似文献   

10.
Intermittent drying aims to match the heat input rate to the drying kinetics of the material so as to avoid thermal degradation of heat-sensitive products in particular. This paper presents results of a liquid diffusion model to examine the effect of varying the rates of heat input by convection heat transfer. This is accomplished by varying the drying air velocity, varying the air temperature as well as its relative humidity over different periods of time in a sequential manner. One of the outcomes of this work is guidelines for use of a heat pump to dehumidify the drying air. While most heat pump dryers are designed to operate continuously, our results show that it is not necessary to use heat pump continuously over the entire drying period. This option saves running costs by reducing use of electrical power in the drying cycle. Furthermore, it is possible to save capital costs by utilizing a smaller heat pump for a given dry product output. Alternatively, a given heat pump system can be used to service two or more drying chambers that may dry the same or different products by simply switching the dehumidified and heated air from one chamber to the other sequentially. When the heat pump air is switched off, unsaturated ambient air maybe used to accomplish rest of the drying. It is shown that using heat pump air over only a part of the drying cycle does not increase the drying time appreciably.  相似文献   

11.
郭新贤  韩东  岳晨 《化工进展》2013,32(1):77-82,128
基于机械热泵除湿原理,同时结合洗衣机衣物烘干温度的要求,设计出一种衣物空气低温烘干循环系统。借助EES软件对该系统建立系统模型,通过理论模拟分析研究其热力学性能,并对影响其热力性能的关键操作参量影响进行分析。研究结果表明,在保证冷凝量均为1.02 kg/h的情况下,该设计系统的单位能耗除湿速率(moisture extraction rate,MER)为0.5018 kW?h/kg,较常规电加热热风烘干系统降低了16.5%;COP为0.79,较常规烘干系统提高了16.5%。此外,相比较常规电加热热风烘干系统方案烘干温度90 ℃,该方案设计的滚筒操作温度仅为57.68 ℃,有效地拓展了可烘干衣物的范围。  相似文献   

12.
基于能量梯级利用热力系统耦合理论,集成了一种适合热敏性农副产品烘干的新型空气干燥循环系统,系统可得到热敏性干燥产品,同时回收湿空气冷凝废热用于有机朗肯循环(ORC)系统对外做功。对关键部件湿空气冷凝器建立传热传质数学模型并经实验验证,考察了关键操作参数对系统脱水速率及节能效果的影响。结果表明,湿空气湿度是影响该系统凝水和节能的最关键参数,该系统凝水及节能特性均随湿空气湿度提高而改善;当干燥箱出口湿空气含湿量温度一定时,新型空气干燥循环凝水量主要受到干燥箱出口空气流量的影响,系统的凝水量和换热量均随湿空气质量流量增加先增加后降低,在0.10~0.15 kg/s出现极大值;系统净输出功随ORC底循环蒸发温度提高显著增加。本系统下的热敏性农副产品烘干建议选择低空气流速、低烘干温度,推荐的ORC底循环蒸发温度为313~323 K。  相似文献   

13.
《Drying Technology》2013,31(7):1333-1356
Abstract

Intermittent drying aims to match the heat input rate to the drying kinetics of the material so as to avoid thermal degradation of heat-sensitive products in particular. This paper presents results of a liquid diffusion model to examine the effect of varying the rates of heat input by convection heat transfer. This is accomplished by varying the drying air velocity, varying the air temperature as well as its relative humidity over different periods of time in a sequential manner. One of the outcomes of this work is guidelines for use of a heat pump to dehumidify the drying air. While most heat pump dryers are designed to operate continuously, our results show that it is not necessary to use heat pump continuously over the entire drying period. This option saves running costs by reducing use of electrical power in the drying cycle. Furthermore, it is possible to save capital costs by utilizing a smaller heat pump for a given dry product output. Alternatively, a given heat pump system can be used to service two or more drying chambers that may dry the same or different products by simply switching the dehumidified and heated air from one chamber to the other sequentially. When the heat pump air is switched off, unsaturated ambient air maybe used to accomplish rest of the drying. It is shown that using heat pump air over only a part of the drying cycle does not increase the drying time appreciably.  相似文献   

14.
The paper sheet drying process consumes about 70% of the total energy required in coated papermaking, and almost all the thermal energy used in the process can be found in the exhaust air; thus, it has significant potential to recover the heat. With the aim of saving energy, the recovered energy is usually used to heat different process streams instead of steam.

This article examines the drying process of an operating coating paper machine to demonstrate an optimization method. To study the possibility of improving energy efficiency, thermodynamic analysis was conducted. The reasons why there is so much heat lost during drying were investigated. Based on the results of the energy and exergy analysis, a new waste heat integration scheme is presented. Furthermore, the performance of the proposed scheme has been evaluated. The results of the case study show an energy efficiency improvement of 7.3% and a specific energy consumption reduction of 4.6% with profitable investments.  相似文献   

15.
为了解决粮食的晾晒烘干问题,“远弘干燥”对玉米烘干塔进行了技术与设备的资源整合,研发了性能更好,更加高效的顺逆式循环流低温玉米烘干塔,并对其系统组成、烘干流程、热风循环流使用、余热利用、技术参数和经济性进行了介绍和分析。  相似文献   

16.
An auxiliary device for rotating alfalfa in air flow with waste air recycling was designed in this study. The motion characteristics of rotating alfalfa in air flow and the new crafts of herbage drying for drying homogeneity were studied. An aerodynamic model of alfalfa segments was established based on the result of the experiment on alfalfa rotation in air flow. The movement of alfalfa segments was analyzed using kinematic simulation. The movement trail and the behavior of alfalfa rotation in air flow were tested and verified. Experimental results revealed that the effect of alfalfa rotation in air flow depends on the air flow parameters and the mechanism of the new device. The influence of drying air flow velocity, initial velocity, and air flow angle were analyzed using a nonlinear regression orthogonal design and rotating alfalfa in air flow and building mathematical models of rotating alfalfa parameters on experimental criteria to optimize the parameters of alfalfa drying homogeneity. MATLAB was used for single-target optimization and experimental verification. Optimized drying parameters were ascertained (i.e., air flow velocity, 2.82 m/s; initial velocity, 0.05 m/s; air flow angle, 5.0° to 5.5°) based on the simulation of the alfalfa drying study and experimental result.  相似文献   

17.
An experimental setup was developed to study the through air–drying characteristics of permeable grades such as tissue and towel under commercially relevant conditions of basis weight, airflow rate, temperature, and humidity conditions. The experimental setup is capable of evaluating the transient fluid flow, heat, and mass transfer characteristics of relatively larger samples (TAPPI standard hand sheets; 0.1524 m) and is capable of studying the effect of local heterogeneity and structure on convective heat and mass transfer. The system is capable of airflow rates of 0.5–10 m/s with corresponding high-speed data collection and acquisition for measuring important variables such as exhaust air humidity. To study the effect of nonuniformity, local temperature and velocity profiles can also be measured using grid of thermocouples and hot wire anemometers. The instantaneous drying rate and airflow characteristics during through air drying was measured and dry permeability, wet permeability, and convective heat and mass transfer characteristics were then calculated. The experimental results were verified by comparing with the results from literature. Typical experimental results were presented to show the effect of sheet basis weight, initial moisture content, and airflow rates on the drying characteristics for two different types of paper samples.  相似文献   

18.
The domestic tumble dryers are becoming indispensable household appliances and responsible for up to 10% of the total residential energy use in developed countries. However, their energy efficiency is low. In this paper, the development of a multi-sensor computer-controlled prototype platform for fabric drying is described for improving the efficiency of dryers. The prototype platform enables the real-time control and recording of key drying parameters including heater power, air flow velocity, rotating speed of drying drum, and drying cycle time. These parameters are automatically adjusted according to the exhaust air humidity instead of the temperature which is used traditionally. Additionally, a new drying model of dividing the drying process into four stages based on the humidity of the exhaust air has been investigated to further increase the energy saving. The performance of this staged drying model is experimentally evaluated in respect to energy consumption, drying time, and the smoothness of fabric after drying. The results clearly indicate that the staged controlling of heating power input not only decreases energy consumption by 21.5%, but also improves the fabric smoothness by 0.9 grade compared to using a single heating power input for the whole drying process. The research outcome can enable the design and production of new dryers that are more energy efficient and lead to dried clothes that require less ironing, which in turn further reduces energy consumption.  相似文献   

19.
A two-dimensional mathematical model was developed to simulate coupled heat and mass transfer in apple under vacuum drying. Luikov's equations are the governing equations in analyzing heat and mass diffusion problems for capillary-porous bodies. The model considers temperature- and moisture-dependent material properties. The aim of this study is to analyze the influence of some of the most important operating variables, in particular, pressure and temperature of drying air, on the drying of apple. The resulting system of unsteady-state partial differential equations has been solved by a commercial finite element method (FEM) package called FEMLAB (COMSOL AB, Stockholm, Sweden). Simulations, carried out in different drying conditions, showed that temperature is more effective than air pressure in determining the drying rate. A parametric study was also carried out to determine the effects of heat and mass transfer coefficients on temperature and moisture content distributions inside apple during vacuum drying. A comparison between the theoretical predictions and a set of experimental results reported in the literature showed very good agreement, especially during the first 4,200 s, when experimental data and theoretical predictions overlapped and relative errors never exceeded 2%.  相似文献   

20.
To determine the performance of a conical spouted bed dryer for the drying of sludge waste, an experimental study of drying in a spouted bed regime was performed under different experimental conditions. The drying performance was determined based on the time evolution of solid moisture content, and the influence of operating conditions (inlet air temperature, air flow rate, and bed mass) on the drying rate of sludge waste in spouted beds of a conical geometry was analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号