共查询到20条相似文献,搜索用时 62 毫秒
1.
利用微分进化(DE)算法对小推力火星探测器发射时机进行搜索.首先建立了动力学方程,推导出最优化模型,然后使用两种策略采用DE算法与间接法相结合的方式对火星探测器发射机会进行了搜索,最后进行了仿真分析.研究结果表明:使用DE算法结合间接法的方式能够搜索到最优的发射机会;同时,针对所采用的发动机模型,小推力火星探测器发射机... 相似文献
3.
针对配电网网架规划问题,在基本微分进化算法基础上,引入改进机制,提出一种基于改进微分进化算法的电力系统无功优化算法。新算法通过参考粒子群算法惯性权重思想,引入惯性加权系数,在计算初期能够维持个体的多样性,后期能够加快算法的收敛速度,提高了微分进化算法的性能。将该算法应用于电力系统无功优化中,仿真结果表明:使用该算法优化的网损平均值更低,寻优性能更好,优化的网损值集中在较小的区间。 相似文献
4.
基于混沌搜索的微分进化算法 总被引:1,自引:0,他引:1
针对基本微分进化算法在后期收敛速度慢,搜索能力差等问题,利用混沌搜索的随机性、遍历性以及对初值的敏感性等特性,提出了一种混合混沌搜索的微分进化算法——混沌微分进化算法。该算法既保持了基本微分进化算法结构简单的特点,又能提高算法的收敛速度、计算精度以及全局寻优能力。数值仿真结果表明,该算法的性能优于基本微分进化算法。 相似文献
5.
压缩感知是基于信号稀疏性提出的采样理论,它在压缩成像、医学图像、雷达成像、天文学、通信等领域都有广泛的应用.压缩感知问题的求解本质上是一个优化问题,本文在微分进化算法的基础上对其改进,提出了一种改进微分进化算法,将其应用于压缩感知问题的求解中,取得了良好的效果. 相似文献
6.
7.
基于微分进化算法的时间最优路径规划 总被引:14,自引:1,他引:14
提出了一种利用微分进化算法进行机器人路径规划的方法,在极坐标系下采用路径点列的极角和极径作为参数进行个体成员的矢量合成,生成的初始路径点集经过提炼处理极大提高机器人移动速度;仿真结果表明该方法可以解决大范围、多障碍环境的机器人路径规划问题。 相似文献
8.
微分进化算法(DE)是模仿生物进化“优胜劣汰、适者生存”的一种随机优化算法,具有简单、快速、鲁棒性好等特点,已经得到广泛应用.通过运用微分进化算法的整数编码方法,在整数空间中求解,并在实数空间中计算解的适应度.使用测试函数对程序进行测试,证明了整数编码解对空间个体中寻优的快速性、准确性. 相似文献
9.
反向微分进化(ODE)算法基于反向优化对种群进行初始化更新以保持种群多样性。但该算法中反向个体容易偏离全局最优个体,不能很快达到全局最优,在函数优化过程中收敛速度慢且容易陷入局部最优。为此,提出一种基于M-H采样的快速反向微分进化算法。M-H采样用于ODE算法的变异操作,满足马尔可夫链可逆条件。马尔可夫链的一步转移概率根据个体等级分配的选择概率进行计算,既能选择最优个体,又能寻找优化方向并保持种群多样性。仿真结果表明,M-H采样得到的个体具有马尔可夫链平稳分布特性,该算法在单峰函数和多峰函数优化中都能快速收敛,全局和局部搜索性能达到平衡,具有较高的搜索精度及较好的鲁棒性。 相似文献
10.
采用混合遗传算法的有限推力轨道拦截优化 总被引:1,自引:0,他引:1
在轨道拦截问题中,研究了天基动能拦截器(KKV)的有限推力轨道拦截优化问题.针对在有限推力条件下,确定速度增益变轨方案,提出建立了轨道拦截优化数学模型,并将复形调优算法加入到遗传算法中,利用该混合遗传算法,以发动机燃料消耗质量最小、拦截时间最短和拦截脱靶量最小为综合优化指标,对轨道拦截进行了优化.以太阳同步轨道上的天基KKV拦截GPS卫星轨道上的目标点为例,分析了混合遗传算法用于轨道拦截优化的性能进行了仿真.仿真结果表明,混合遗传算法能有效解决轨道拦截这一复杂非线性多目标优化问题,同时增强了局部搜索能力,提高了计算效率. 相似文献
11.
个体的适应度赋值和群体的多样性维护是进化算法的两个关键问题。首先,一方面,定义了Paretoε-支配关系的相关概念,通过Paretoε-支配关系确定个体的强度Pareto值,根据个体的强度Pareto值对群体进行Pareto分级排序,实现优胜劣汰;另一方面,使用拥挤距离估算个体的拥挤密度,淘汰位于拥挤区的一些个体,维持群体的多样性。然后,根据差分进化算法的特点,使用适当的进化策略和控制参数,给出了一种用于求解多目标优化问题的差分进化算法DEAMO。最后,数值实验表明,DEAMO在求解标准的多目标优化问题时性能表现优良。 相似文献
12.
针对差分进化算法DE 传统变异策略不能有效平衡全局搜索和局部搜索,并且算
子固定,导致算法早收敛、搜索效率较低。基于DE 变异策略性能,提出一种混合变异策略,
力图平衡算法探索和开发能力,使得前期增强全局搜索,保持种群多样性; 后期偏重局部搜
索,尽快收敛到全局最优值。同时操作算子采用随机正态缩放因子F 和时变交叉概率因子CR,
进一步改善算法性能。几个典型Benchmarks 测试函数实验表明: 该改进型差分进化算法能有
效避免早收敛,较好地提高算法的全局收敛能力和搜索效率。 相似文献
13.
标准烟花算法粒子间交流机制存在缺陷,且对最优点位置不在原点和原点附近时的目标函数求解能力差,对此提出差分进化引导趋化算子的烟花算法(BFA)。利用差分进化算法和趋化算子的局部搜索优势,在每一次迭代的过程中不断寻找这一代的最好个体,通过最优个体信息对局部粒子维度信息进行修改从而使得整个群体得到改善,8个标准和增加位置偏移的测试函数仿真结果表明,BFW相比于原始烟花算法(FA),粒子群算法和SPSO在寻优精度和寻优速度上有了较好的提高。 相似文献
14.
15.
一种基于粒子群优化算法和差分进化算法的新型混合全局优化算法 总被引:4,自引:1,他引:4
提出一种基于粒子群算法(PSO)和差分进化算法(DE)相结合的新型混合全局优化算法——PSODE.该算法基于一种双种群进化策略,一个种群中的个体由粒子群算法进化而来,另一种群的个体由差分操作进化而来.此外,通过采用一种信息分享机制,在算法执行过程中两个种群中的个体可以实现协同进化.为了进一步提高PSODE算法的性能,摆脱陷入局部最优点,还采用了一种变异机制.通过4个标准测试函数的测试并与PSO和DE算法进行比较,证明本文提出的PSODE算法是一种收敛速度快、求解精度高、鲁棒性较强的全局优化算法. 相似文献
16.
提出一种协同进化PSO算法,用于保持粒子种群的多样性并避免发生“早熟”的问题.该方法采用两个不同的分群;其中分群一的粒子采用标准PSO算法进行搜索寻优,分群二的粒子采用差异演化算法进行搜索和寻找最优解.在搜索过程中,如果标准PSO算法的适应度变化率低于一个阈值,则按照黄金分割率用分群二中的若干优势粒子取代分群一中的劣势粒子.用所提出的PSO算法和标准PSO算法对4种常用函数进行优化.结果表明,该粒子群优化算法比标准粒子群优化算法更容易找到最优解,而且优化效率和优化性能明显提高. 相似文献
17.
人工萤火虫优化算法在寻找函数全局最优值时存在着收敛速度慢、易陷入局部最优、收敛成功率和计算精度低等缺点,为此,文中将人工鱼群算法的觅食行为嵌入到人工萤火虫算法,并与差分进化算法融合,提出一种基于人工萤火虫与差分进化的混合优化算法.最后,通过4个典型测试函数和1个应用实例进行测试,结果表明所提出的混合算法收敛速度快,计算精度高,其整体逼近性能比基本人工萤火虫和差分进化算法更优. 相似文献
18.
19.
20.
该文针对相机标定过程中因优化算法所引起的精度不足、稳定性差、易陷入局部最优的问题,提出将樽海鞘优化算法和自适应差分进化算法相结合的相机标定优化算法。该混合算法利用樽海鞘优化算法提高精度,利用自适应差分进化算法增强局部搜索能力,在不同迭代阶段对适应度函数采用分段优化方式,实现平衡局部和全局搜索能力。实验采用每格50 mm×50 mm标准的棋盘格作为标定板,选取15张不同角度的标定图片,图片有效像素为4608 pixe×l3456 pixel,分别利用张正友标定法、樽海鞘算法以及本文提出的樽海鞘-自适应差分进化混合算法进行相机内参的优化。实验结果表明该文提出的混合算法比传统标定方法重投影误差更小,标定精度更高。 相似文献