首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To overcome the relatively short gastrointestinal (GI) time and improve localization for oral controlled or sustained release drug delivery systems, bioadhesive polymers that adhere to the mucin/epithelial surface are effective and lead to significant improvement in oral drug delivery. Improvements are also expected for other mucus-covered sites of drug administration. Bioadhesive polymers find application in the eye, nose, and vaginal cavity as well as in the GI tract, including the buccal cavity and rectum. This article lays emphasis mainly on mucoadhesive polymers, their properties, and their applications in buccal, ocular, nasal, and vaginal drug delivery systems with its evaluation methods.  相似文献   

2.
To overcome the relatively short gastrointestinal (GI) time and improve localization for oral controlled or sustained release drug delivery systems, bioadhesive polymers that adhere to the mucin/epithelial surface are effective and lead to significant improvement in oral drug delivery. Improvements are also expected for other mucus-covered sites of drug administration. Bioadhesive polymers find application in the eye, nose, and vaginal cavity as well as in the GI tract, including the buccal cavity and rectum. This article lays emphasis mainly on mucoadhesive polymers, their properties, and their applications in buccal, ocular, nasal, and vaginal drug delivery systems with its evaluation methods.  相似文献   

3.
It is advantageous to deliver some drugs with short half-life, and which are to be given frequently for chronic ailments, in the form of controlled-release (CR) formulations. The orally administered drugs, in the form of conventional matrix or reservoir type formulations, pose problems of bioavailability fluctuations due to gastric pH variations. Moreover, the release of drug(s) from these systems is affected by the hydrodynamic conditions of the body. Osmotically controlled drug delivery systems utilize the principles of osmotic pressure for the controlled delivery of active agent(s). The release rate of drug(s) from these systems is independent of the physiological factors of the gastrointestinal (GI) tract to a large extent. In the present review, theory underlying the delivery of drugs from osmotic systems is presented. Different types of oral osmotic systems, their advantages over conventional matrix and reservoir types of systems, and their applications are also discussed. Finally, some of the limitations, adverse effects, and patent and market status of these systems are reviewed. These systems form a major segment of drug delivery products. Because of their advantages and strong market potential, it appears that the future of osmotic systems in rate-controlled oral drug delivery is promising.  相似文献   

4.
Osmotically controlled oral drug delivery   总被引:8,自引:0,他引:8  
It is advantageous to deliver some drugs with short half-life, and which are to be given frequently for chronic ailments, in the form of controlled-release (CR) formulations. The orally administered drugs, in the form of conventional matrix or reservoir type formulations, pose problems of bioavailability fluctuations due to gastric pH variations. Moreover, the release of drug(s) from these systems is affected by the hydrodynamic conditions of the body. Osmotically controlled drug delivery systems utilize the principles of osmotic pressure for the controlled delivery of active agent(s). The release rate of drug(s) from these systems is independent of the physiological factors of the gastrointestinal (GI) tract to a large extent. In the present review, theory underlying the delivery of drugs from osmotic systems is presented. Different types of oral osmotic systems, their advantages over conventional matrix and reservoir types of systems, and their applications are also discussed. Finally, some of the limitations, adverse effects, and patent and market status of these systems are reviewed. These systems form a major segment of drug delivery products. Because of their advantages and strong market potential, it appears that the future of osmotic systems in rate-controlled oral drug delivery is promising.  相似文献   

5.
Oral administration is perhaps the most commonly used and acceptable route for drug delivery to patients, mainly due to its non-invasiveness, simplicity, and versatility. Conventional delivery media such as tablets or capsule-based formulations, however, could result in low drug bioavailability and insufficient therapeutic efficiency, especially for delivering biologics (e.g., peptide, protein, antibody, nucleic acid). Therefore, with the advancement of material science and micro-/nano-fabrication techniques, various carriers have been developed to protect drugs and improve their absorption in the gastrointestinal (GI) tract. Herein, we first summarized various types of drug molecules being used for oral administration. Then we discussed the major physiological barriers (including various biochemical, mucosal diffusion, and cellular permeation barriers) that hinder drug transportation and absorption, as well as the main targeting regions in the GI tract. On this basis, we reviewed recently emerged oral drug delivery platforms and discussed their widely investigated biomedical applications. Finally, we present future perspectives for materials science-enabled oral drug delivery platforms, and potential challenges for clinical translation.  相似文献   

6.
The use of polymers in controlling the release of drugs has become important in the formulation of pharmaceuticals. Watersoluble polymers such as polyethylene glycol and polyvinylpyrrolidone may be used to increase the dissolution rates of poorly soluble drugs (Ford)1 and slowly soluble, biodegradable polymers such as polylactic acid may be used for controlled release implants (Rak et a1.2), Hydrogels provide the basis for implantation, transdermal and oral-controlled release systems. Hydroxypropylmethylcellulose (HPMC) are cellulose ethers which may be used as the basic for hydrophilic matrices for controlled release oral delivery.

In tablet matrix systems the tablet is in the form of compressed compact containing an active ingredient, lubricant, excipient, filler or binder. The matrix may be tabletted from wet-massed granules or by direct compression.

This review article examines a previously published series of work and concentrates on the following aspects of the subject; the relationship between release rate and quantity of polymers, such consideration allow a certain predicability in release rates to be made. Also the effect of drug particle size, tablet shape and the presence of additional diluents in the formula are examined.  相似文献   

7.
Tablets containing mesalazine as a model drug were coated using various combinations of two methacrylic acid copolymers, (Eudragit® L100 and Eudragit S100) by spraying from aqueous systems. The Eudragit L100-Eudragit S100 (w/w) combinations studied were 1:0, 4:1, 3:2, 1:1, 2:3, 1:4, 1:5, and 0:1. The coated tablets were tested in vitro for their suitability for pH-dependent colon-targeted oral drug delivery. The dissolution profiles of the drug obtained from the studied tablets demonstrate that the release of the drug could be manipulated by changing the Eudragit L100-Eudragit S100 ratios in the combinations within the pH range between 6.0 and 7.0 in which the individual polymers are soluble, and a coating formulation consisting of a combination of the two polymers can overcome the issue of high gastrointestinal (GI) pH variability among individuals. The results also demonstrate the feasibility of using aqueous dispersions of Eudragit L100-Eudragit S100 combinations for coating tablets for colon-targeted delivery of drugs, and that the formulation can be adjusted to deliver drug(s) at any other desirable site of the intestinal region of the GI tract in which pH of the fluid is within the range 6.0 to 7.0. For colon-targeted delivery of drugs, the proposed combination system is superior to tablets coated with either Eudragit L100 or Eudragit S100 alone.  相似文献   

8.
Abstract

Origins of rate controlled implantable drug delivery dates back to 1964 when silicone implants were used to prolong a drug effect. Despite much activity in the years since 1964, the progress to a safe, effective and acceptable implant system(s) has been slow. The critical factors in implant research which need to be addressed include: erodibility, reproducibility, lack of irritation and carcinogenicity, lack of dose dumping, duration and pulses. While it is possible to surgically implant and remove drug-containing devices or polymeric matrices, the requirement for such intervention could have a significant negative impact on the acceptability of a product candidate. In recent years, two implant systems have been approved for human use; (a) a silicone-based device (NorplantR), and (b) a system based on lactide/glycolide copolymers to release a luteinizing hormone - releasing hormone (LHRH) agonist for treatment of male reproductive tract tumours. This approach to drug delivery is very appealing for a number of classes of drugs, particularly those that cannot be given via the oral route, and drug candidates whose therapeutic index is relatively large. This article reviews the background to implantable drug delivery systems, the rationale behind using implantable drug delivery systems, the types of systems being currently researched, and the various methods available for their evaluation.  相似文献   

9.
Carbomers are extensively being used in controlled drug delivery systems (CDDS). They are also finding numerous applications in oral mucoadhesive drug delivery because of their ability to interact with the mucus glycoprotein and to remain localized to a specific site. The present review aims at giving an insight into the potential application of carbomers in mucoadhesive CDDS. This review deals with the physicochemical properties of carbomers and various mechanisms of mucoadhesion. The mechanism for the release of the drug, both water soluble and water insoluble, is discussed. The use of carbomers in oral delivery of peptides or protein-based drugs is also covered.  相似文献   

10.
Oral drug administration is convenient with pH dependent drug delivery system since the drug has to pass through different pH environments in gastro intestinal (GI) tract. The pH dependent swelling/shrinking behavior of hydrogel drug carrier controls the drug release without affecting the function of drug. pH dependent hydrogels of poly (vinyl alcohol) (PVA) were prepared by cross linking with maleic acid (MA). The hydrogels were characterized by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, DSC, porosimetry, SEM, TEM, biocompatibility study and by measuring their swelling behavior in water, simulated gastric fluid (SGF) and intestinal fluid (SIF). Swelling of the hydrogels was found to be highest in SIF (pH: 7.5) and lowest in SGF (pH: 1.2) resembling that required in colon targeted drug delivery systems. Since the swelling behavior of the gel is pH dependent, these hydrogels were studied for colon targeted drug delivery in an in-vitro set-up resembling the condition of GI tract. The ratio of PVA and MA in the hydrogel was varied to study the effect on the drug diffusion rate. For drug delivery study, vitamin B12 and salicylic acid were used as model drugs. The hydrogel, loaded with model drugs vitamin B12 and salicylic acid also demonstrated colon specific drug release with a relatively higher drug release in SIF (pH: 7.5) than that in SGF (pH: 1.2).  相似文献   

11.
Oral mucosa is well-known to be one of the best routes for drug absorption. But very few R & D works have been initiated to investigate the feasibility of using this site to control drug delivery. A transmucosal controlled-release device, which is capable of achieving excellent absorption and controlled release of drugs, has been developed. The device is a tabletshaped mucoadhesive system which is composed of two layers. The upper layer is a fast-release layer and the lower layer is a sustained-release layer, and designed to be applied between buccal and gingival mucosae. Both layers are formulated from synthetic polymers to control the release of drugs.

Isosorbide dinitrate(ISDN), a well-documented antianginal drug, is known to be susceptible to extensive presystemic elimination when taken orally. It was used as the candidate drug and the systemic bioavailability was studied in human and observed to be improved by as much as 5 fold when compared to a marketed oral sustained-release tablet; On the other hand, much smaller amount of metabolites was formed. The plasma profile of ISDN has also been observed to be substantially prolonged (12 hrs as compared to less than 1 hr for sublingual tablet and spray product on the market). These observations have demonstrated that this device is capable of not only bypassing hepatic “first-pass” metabolism but also having a sustainedrelease property of prolonging the release of ISDN.

Clinical studies performed in the anginal patients for up to one year have demonstrated the therapeutic benefits of this device in achieving a substantial reduction in the frequency of anginal attacks.

This type of device was also applied to the systemic delivery of another antianginal drug, Nifedipine, by employing a formulation with longer sustained drug release property. Again, the clinical results demonstrated that a prolonged duration of therapeutic plasma concentration has also been accomplished.  相似文献   

12.
Abstract

The use of polymers in controlling the release of drugs has become important in the formulation of pharmaceuticals. Watersoluble polymers such as polyethylene glycol and polyvinylpyrrolidone may be used to increase the dissolution rates of poorly soluble drugs (Ford)1 and slowly soluble, biodegradable polymers such as polylactic acid may be used for controlled release implants (Rak et a1.2), Hydrogels provide the basis for implantation, transdermal and oral-controlled release systems. Hydroxypropylmethylcellulose (HPMC) are cellulose ethers which may be used as the basic for hydrophilic matrices for controlled release oral delivery.

In tablet matrix systems the tablet is in the form of compressed compact containing an active ingredient, lubricant, excipient, filler or binder. The matrix may be tabletted from wet-massed granules or by direct compression.

This review article examines a previously published series of work and concentrates on the following aspects of the subject; the relationship between release rate and quantity of polymers, such consideration allow a certain predicability in release rates to be made. Also the effect of drug particle size, tablet shape and the presence of additional diluents in the formula are examined.  相似文献   

13.
The aim of this study was to prepare and evaluate calcium-free sustained release drug delivery systems, based on the in-situ gelation of oral suspensions containing chitosan, sodium alginate and Ranitidine as drug model. The combined effects of polymer concentrations and their interactions on the rheological characteristics of both gels and suspensions and, on the kinetics of drug release were evaluated by using a central composite face-centered design. Rheological analysis showed that suspensions were potentially stable, with a viscosity increased by 1000 times compared to that of water. In addition, the obtained gels were consistent; their storage modulus could reach values close to 50?kPa when alginate concentration was greater than 7.5?g/100?mL and chitosan was fixed to 0.5?g/100?mL. In these conditions gels should have a higher gastric residence time, in comparison to the standard gastric emptying time (~2?h). Evaluation of the in-vitro release kinetics of Ranitidine showed that the association of the lowest concentration of chitosan (0.5?g/100?mL) with higher alginate concentrations generates sustained release kinetics profiles. The time corresponding to 63% of release was found close to 1.5?h, in which case the process is governed by Fickian diffusion. Finally, calcium-free alginate-chitosan based on the in-situ gelation of suspensions is advantageous as a drug delivery system for sustained-release.  相似文献   

14.
Oral drug administration is convenient with pH dependent drug delivery system since the drug has to pass through different pH environments in gastro intestinal (GI) tract. The pH dependent swelling/shrinking behavior of hydrogel drug carrier controls the drug release without affecting the function of drug. pH dependent hydrogels of poly (vinyl alcohol) (PVA) were prepared by cross linking with maleic acid (MA). The hydrogels were characterized by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, DSC, porosimetry, SEM, TEM, biocompatibility study and by measuring their swelling behavior in water, simulated gastric fluid (SGF) and intestinal fluid (SIF). Swelling of the hydrogels was found to be highest in SIF (pH: 7.5) and lowest in SGF (pH: 1.2) resembling that required in colon targeted drug delivery systems. Since the swelling behavior of the gel is pH dependent, these hydrogels were studied for colon targeted drug delivery in an in-vitro set-up resembling the condition of GI tract. The ratio of PVA and MA in the hydrogel was varied to study the effect on the drug diffusion rate. For drug delivery study, vitamin B12 and salicylic acid were used as model drugs. The hydrogel, loaded with model drugs vitamin B12 and salicylic acid also demonstrated colon specific drug release with a relatively higher drug release in SIF (pH: 7.5) than that in SGF (pH: 1.2).  相似文献   

15.
Amongst the various routes of drug delivery, the field of ocular drug delivery is one of the most interesting and challenging endeavors facing the pharmaceutical scientist. Recent research has focused on the characteristic advantages and limitations of the various drug delivery systems, and further research will be required before the ideal system can be developed. Administration of drugs to the ocular region with conventional delivery systems leads to short contact time of the formulations on the epithelium and fast elimination of drugs. This transient residence time involves poor bioavailability of drugs which can be explained by the tear production, non-productive absorption and impermeability of corneal epithelium. Anatomy of the eye is shortly presented and is connected with ophthalmic delivery and bioavailability of drugs. In the present update on ocular dosage forms, chemical delivery systems such as prodrugs, the use of cyclodextrins to increase solubility of various drugs, the concept of penetration enhancers and other ocular drug delivery systems such as polymeric gels, bioadhesive hydrogels, in-situ forming gels with temperature-, pH-, or osmotically induced gelation, combination of polymers and colloidal systems such as liposomes, niosomes, cubosomes, microemulsions, nanoemulsions and nanoparticles are discussed. Novel ophthalmic delivery systems propose the use of many excipients to increase the viscosity or the bioadhesion of the product. New formulations like gels or colloidal systems have been tested with numerous active substances by in vitro and in vivo studies. Sustained drug release and increase in drug bioavailability have been obtained, offering the promise of innovation in drug delivery systems for ocular administration. Combining different properties of pharmaceutical formulations appears to offer a genuine synergy in bioavailability and sustained release. Promising results are obtained with colloidal systems which present very comfortable conditions of use and prolonged action.  相似文献   

16.
Significant progress has been made in nanoscale drugs and delivery systems employing diverse chemical formulations to facilitate the rate of drug delivery and release from the human body. The biocompatible nanomaterials have been used in biological markers, contrast agents for biological imaging, healthcare products, pharmaceuticals, drug-delivery systems as well as in detection, diagnosis and treatment of various types of diseases. Nanomedicines offer delivery of potential drugs to human organs which were previously beyond reach of microscale drugs due to specific biological barriers. The nanoscale systems work as nanocarriers for the delivery of drugs. The nanocarriers are made of biocompatible and biodegradable materials such as synthetic proteins, peptides, lipids, polysaccharides, biodegradable polymers and fibers. This review article reports the recent developments in the field of nanomedicine covering biodegradable polymers, nanoparticles, cyclodextrin, dendrimeres, liposomes and lipid-based nanocarriers, nanofibers, nanowires and carbon nanotubes and their chemical functionalization for distribution to different organs, their solubility, surface, chemical and biological properties, stability and release systems. The toxicity and safety of nanomaterials on human health is also briefly discussed.  相似文献   

17.
Antibiotic delivery systems based on biodegradable coatings have found considerable interest for the prophylaxis and local therapy of biomaterial‐related infections. In this study sparingly water‐soluble gentamicin salts have been prepared and tested as biodegradable antibiotic‐releasing coating systems. Using the coating systems, homogeneous, well adhering films can be produced on various implant materials, like ceramics, glasses or metals surfaces, with different surface morphologies. The in vitro release profiles of the antibiotic coating systems were characterized by an initial burst release followed by a sustained release of small antibiotic amounts up to several weeks. It was found that the in vitro release, especially in the initial phase, can be modulated by the ratio between highly water‐soluble gentamicin salts and sparingly soluble ones in the coating. Coating systems of the same type as described for gentamicin are available from a wide range of antibiotics differing in structure and mechanism of antibacterial action. Based on these results, the developed antibiotic coatings offer new perspectives to prevent and treat biomaterial‐related infections.  相似文献   

18.
Layer-by-layer (LbL) films have been exploited in drug delivery systems that may be used in the form of patches, but the encapsulation of poor water soluble drugs and their release with a controlled rate are still major challenges to be faced. In this paper, we demonstrate the controlled release of aloin (barbaloin), an important component of the widely used Aloe vera, encapsulated into liposomes and immobilized in LbL films with a polyelectrolyte. With a systematic study using fluorescence spectroscopy of aloin release from solutions and from LbL films with different phospholipid liposomes, we inferred that optimized release was achieved with aloin incorporated into palmitoyl oleyl phosphatidyl glycerol (POPG) or dipalmitoyl phosphatidyl glycerol (DPPG) liposomes immobilized in LbL films. Significantly, with this optimized system aloin was almost completely released within 30 h, with a small release rate at the end, which followed a sharp release in the first 5 h. Upon comparing the rates of the distinct systems, we conclude that the main factors controlling the release are the electrostatic interactions involving the negatively charged phospholipids. Because these interactions can be tuned in LbL films, the approach used here opens the way for new drug delivery systems to be developed with fine control of the drug release.  相似文献   

19.
The application of drug delivery systems in oral environment is relatively a new area of research with the exception of release of fluoride ions from polyalkenoate cements and their predecessor silicate cements. The present study addresses development of a novel device based on ethylene vinyl acetate copolymer (EVA), a biocompatible material which enables constant drug release over several days to treat oral infections. Drugs incorporated in EVA included tetracycline, minocycline and nystatin together with combinations (C) of nytatin-tetracycline (1 : 1) and nystatin-minocycline (1 : 1). Polymer casting solutions were prepared by dissolving EVA and the drugs in the ratio of 10 : 1 in 70 ml of dichloromethane at 38 °C for 6 h. Thin square films of 3×3 cm and 1 mm thickness were cut from the dry sheet obtained by solvent evaporation. Drug loaded samples were extracted for a minimum of 15 days in 10 ml medium (water or water/ethanol (1 : 2) or 0.9% saline solution) which is replaced daily. Spectral measurements were made to follow changes in optical densities (OD) during release kinetics. Analysis of the data revealed that among all the drugs tested tetracycline exhibited the highest release rate (56.15ug/cm2/day) and % cumulative release (27.92).The observed enhanced values may be interpreted as due to the channels formed due to changes in free volume (microvoids). In case of nystatin-minocycline combination, the observed increased values of release rates and percent cumulative release, may be attributed to the swelling component or channels or relative hydrophobic interactions. Initial burst effects due to liberation of surface-bound drug molecules were observed with reference to all the three drugs and the combinations of drugs studied. Among all the drugs, minocycline exhibited the least burst effect suggesting that the drug is more homogeneously distributed in the copolymer. Drug loaded EVA thermoplastic copolymer may provide a favorable therapeutic material for the development of a novel, local treatment for oral, mucosal and periodontal infections.  相似文献   

20.
A new kind of silica materials was proposed as carriers for drug delivery. The materials are characterized by the presence of hierarchical macro/mesopores, penetrable macropores and large pore volumes. The unique structure renders them ideal carriers for efficient and sufficient loading of drugs to establish controlled delivery systems. A series of such materials were synthesized and derivatized with octyl or octadecyl to investigate their drug delivery behavior. Nimodipine, as a model drug, was entrapped into the carriers by repeated soaking, filtration and evaporation. It is found that the drug-loading amount increased with increasing mesopore sizes of the carriers. The loading amount can reach as high as 350 wt% (drug/carrier). The in vitro release studies demonstrate that both enhanced release and sustained release can be achieved on the proposed materials. Moreover, the release speed can be controlled by the macropore sizes and surface characteristics of the materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号