共查询到20条相似文献,搜索用时 62 毫秒
1.
芯片的表面缺陷检测在半导体制造中具有重要意义,针对目前芯片表面缺陷面积小,缺陷外形多变,缺陷尺寸跨度大的情况,提出一种基于YOLOv5改进的芯片表面缺陷检测算法,首先基于ConvNext网络改进特征提取模块,提升网络稳定性和特征表达能力,同时提出增强卷积注意力模块(ehanced convolutional block attention module, E_CBAM),将更详细的位置信息嵌入到卷积注意力(convolutional block attention module, CBAM)之中,提升整个网络对于小面积及边缘缺陷的检测能力,而针对芯片缺陷多变尺寸跨度大的问题,研究引入了可变形卷积和双向特征金字塔网络(bi-directional feature pyramid network, BiFPN),一方面可变形卷积对于外形不规则的卷积有更好的提取能力,另一方面Neck部分的BiFPN在简化结构的同时保证了多尺度融合的准确性。经过实验表明,改进后的网络在芯片表面缺陷数据集(chip defect dataset, CDD)上,平均精度均值(mAP)mAP@0.5指标达到95.3... 相似文献
2.
为了提取图像特征多方向的灰度强度变化,使检测结果更具鲁棒性,提出了一种基于各向异性高斯方向导数滤波器与学习结合的多尺度角点检测算法。该算法首先通过下采样构建3层图像金字塔,其中每层利用各向异性高斯方向导数滤波器获取每个像素点在8个方向的灰度强度变化;其次与图像进行卷积得到幅度响应;然后再输入卷积神经网络进一步学习;最后通过1×1的卷积输出角点响应。将实验结果与现有的基于深度学习的算法进行比较,提出的算法在重复性、平均精度、定位误差上都取得了较好的结果。 相似文献
3.
螺栓作为机械设备最常用的连接件,螺栓连接的稳定性对保障机械设备安全运行起着至关重要的作用,对螺栓松动程度进行检测有着重要意义.针对螺栓松动4种不同状态,提出了一种基于变分模态分解(VMD)及时频敏感特征与最小二乘支持向量机(LSSVM)相结合的螺栓松动检测方法.针对螺栓松动的4种不同状态,搭建了螺栓松动检测模拟实验平台... 相似文献
4.
针对传统的卷积神经网络不能充分利用图像的多尺度信息,以及网络层数的增加导致优化参数增加的问题。提出多尺度残差网络模型通过多尺度跨通道的卷积融合提高图像的特征表征能力;然后把大的卷积核分解成小的非对称卷积核降低网络的参数计算;接着利用残差网络原理来降低深层网络的梯度消失问题;最后将提出的多尺度卷积模块嵌入到Lenet网络中。在Mnist数据集上的测试结果证明分类准确率比原始Lenet网络提高了0. 24%,在LFW数据集上的测试结果表明分类准确率优于Deep Face、Web Face等传统算法。 相似文献
5.
针对火灾检测时间长,影响最佳抢救时间的问题,设计了基于改进CNN的火灾实时检测方法。提取火灾图像数据,充分分析火势与烟势;基于改进CNN构建火灾检测模型,缩短检测时间,提高火灾检测精准度,进而实现火灾高效检测。采用对比实验的方式,验证该方法的检测时间较短,可符合实时性需求,极具推广价值。 相似文献
6.
在受图像拍摄条件、图像内容自身复杂性、图像内容与背景接近程度等多种因素的影响,图像的边缘线检测容易发生漏检、误检。因模型自身设计缺陷或训练样本中边缘像素点与非边缘像素点的不平衡原因,多数算法的图像边缘检测结果普遍存在线条粗、质量较低的问题。提出一种多尺度卷积神经网络模型,由三个分别接受一幅图像的不同尺度输入的子网络结构组成,分别在不同尺度视觉下学习图像的边缘知识。然后按尺度从粗到细对各尺度提取的知识特征进行融合,实现边缘轮廓检测。模型充分利用多尺度技术在图像处理领域的优势,同时引入了自注意力机制以提升卷积特征内部关联性的捕获能力。本文提出了一个新的损失函数,由交叉熵损失函数和L1范数组成,避免训练样本非均衡性对训练模型的影响。使用指标ODS、OIS、AP度量图像边缘检测的质量。在BIPED数据集上测试,三个指标的得分分别为0.845,0.856,0.886。在BSDS500数据集上测试,算法在F-measure指标上得分为0.826。实验结果表明,与其它学习型的算法相比,算法输出图像边缘结果漏检率更低、且质量更高。 相似文献
7.
为了提高 CenterNet 无锚框目标检测网络的目标检测能力,提出一种基于注意力特征融合和多尺度特征提取网络的改
进 CenterNet 目标检测网络。 首先,为了提升网络对多尺度目标的表达能力,设计了自适应多尺度特征提取网络,利用空洞卷积
对特征图进行重采样获取多尺度特征信息,并在空间维度上进行融合;其次,为了更好地融合语义和尺度不一致的特征,提出了
一种基于通道局部注意力的特征融合模块,自适应地学习浅层特征和深层特征之间的融合权重,保留不同感受域的关键特征信
息。 最后,通过在 VOC 2007 测试集上对本文算法进行验证,实验结果表明,最终算法的检测精度达到 80. 94%,相较于基线算法
CenterNet 提升了 3. 82%,有效提升了无锚框目标检测算法的最终性能 相似文献
8.
针对石英坩埚气泡检测现有方法实时性差及小目标检测能力不足的问题,提出了一种改进YOLOv5的石英坩埚气泡检测算法YOLOv5-QCB。首先,自建石英坩埚气泡数据集,根据气泡尺寸小且分布密集的特点,减少网络下采样的深度,保留丰富的细节特征信息;同时,在颈部使用空洞卷积以增大特征图感受野,实现全局语义特征的提取;最后,在检测层前添加有效通道注意力机制,增强重要通道特征的表达能力。实验结果表明,相比于原模型,改进后YOLOv5-QCB能有效降低对小气泡的漏检率,平均检测精度从96.27%提升到98.76%,权重缩减了二分之一,能够实现快速、准确检测石英坩埚气泡数量。 相似文献
9.
10.
为了克服在不同图像上的尺度选择问题,提出了一种基于边缘轮廓线的多尺度Gabor滤波器的角点检测算法。该算法首先利用Canny边缘检测算子提取图像的边缘轮廓;进而用一组构建好的4个尺度8个方向Gabor滤波器的虚部对图像进行平滑,并计算每个像素在其相同尺度下各个方向上Gabor滤波器虚部响应的归一化的和;最后将每个边缘像素点在所有尺度下的乘积作为新的角点测度, 当角点测度大于预设阈值时,则认定该点为角点。将实验结果与经典的Harris、CPDA和He&Yung角点检测算法进行比较,提出的算法在检测准确率、定位误差、噪声稳健性性能指标上,都取得了更好的结果。 相似文献
11.
输电线路悬挂异物会引发输电线路单相接地、相间短路等停电事故,因此本文提出一种基于卷积神经网络与ECOC-SVM的输电线路异物检测方法。首先,本文构建气球、风筝、塑料和鸟巢4种输电线路异物图像数据集;然后采用Otsu自适应阈值分割、形态学处理等方法提取感兴趣区域;再利用DenseNet201提取感兴趣区域的特征;最后对ECOC-SVM模型进行训练、测试与结果分析。所用方法在4类异物上的平均识别准确率可达93.3%,有助于提高输电线路运维的效率。 相似文献
12.
针对传统供水管网泄漏检测问题,本文提出了一种基于稀疏轻量卷积神经网络的管道泄漏检测算法。首先通过声音传感器采集管道泄漏的声音信号,经过立体声转换、重采样、长度对齐等预处理操作后,将其转换成梅尔频谱图。然后,构建一种稀疏轻量化的卷积神经网络模型来对梅尔频谱图进行特征抽取和泄漏检测。针对声音特征图的稀疏和时延性质,本文采用Inception网络结构来进行提高模型的特征抽取能力。此外,因为该模型需要被部署到边缘侧,因此设计了一种基于SqueezeNet的轻量化卷积神经网络模型来减少模型的参数,降低模型复杂度。实验结果表明,提出的管道泄漏检测算法在保证复杂度较低的同时具有较高的识别准确率。 相似文献
13.
复杂背景下红外多目标图像及视频的检测是目标检测的热点也是难点,为了更准确地检测出复杂背景下的红外目标,将YOLOv3算法进行改进,首先通过在算法的原有基础上增加特征尺度,提高对距离远且背景复杂的待测图像的识别精度,并将BN网络层与卷积神经网络层融合计算得到最后的检测结果,将原来的YOLOv3算法与改进后的算法的结果进行分析对比可得,改进后的算法能够将平均识别精度从64%提高到88%,将mAP从51.73提高到59.28,验证了改进后的YOLOv3算法在红外目标检测下具有更好的性能,更明显的优势。 相似文献
14.
15.
针对输电线路巡检中可能存在拍摄图像质量不高的问题,以及线路缺陷目标小而分布密集而导致传统方法检测精度不高的问题,提出一种基于超分辨率重建与多尺度特征融合的输电线路缺陷检测方法。首先,使用超分辨率网络对巡检图像进行重建,提升清晰度,丰富图像中包含的特征信息;然后使用改进的YOLOX网络检测巡检图像中的缺陷,在主干网络中嵌入卷积块注意力机制,强化模型对重叠小目标的定位能力;为进一步提升小目标的检测能力,在YOLOX的特征融合网络中新增浅层检测尺度进行特征融合;最后,通过使用CIOU优化边界框损失函数提升模型收敛能力,降低缺陷目标的漏检率。实验结果表明,所提方法能在提升巡检图像质量的基础上对输电线路缺陷准确地检测,精度达到93.27%,相比SSD等经典模型,对小而密集的缺陷目标有着更强的提取能力和鲁棒性。 相似文献
16.
为解决电压暂降问题,动态补偿技术是其最终途径,而准确检测出电压暂降的主要特征量是电压暂降补偿的前提.并且检测装置需采取滤波处理措施以减少非基频信号的影响.将基于正弦函数模型的算法应用于电压暂降检测方法,采用图基低通数字滤波器进行数字滤波,且对其检测结果进行分析,并提出了一种基于正弦函数模型的改进方法.仿真结果证明了该方法的有效性. 相似文献
17.
为了准确获取运动想象脑电信号的全局特征和个体间的共性特征,进而提高其分类准确率和模型鲁棒性,提出一种参数共享迁移学习的融合卷积神经网络算法.首先把源域上训练完成的网络逐层迁移至目标网络以获取最佳迁移层.其次,在迁移层后分别连接不同数量的卷积-池化块构成4个不同深度的卷积网络,并将其并行融合后连接分类器得到分类结果.利用... 相似文献
18.
Emil Selvan Gnanasigamani Samuel Raj Issac Diana Jeba Jingle Balajee Maram John Patrick Ananth 《International Journal of Adaptive Control and Signal Processing》2023,37(1):224-243
The Internet of Things (IoT) has tremendously spread worldwide, and it influenced the world through easy connectivity, interoperability, and interconnectivity using IoT devices. Numerous techniques have been developed using IoT-enabled health care systems for cancer detection, but some limitations exist in transmitting the health data to the cloud. The limitations can be accomplished using the proposed chronological-based social optimization algorithm (CBSOA) that effectively transmits the patient's health data using IoT network, thereby detecting lung cancer in an effective way. Initially, nodes in the IoT network are simulated such that patient's health data are collected, and for transmission of such data, routing is performed in order to transmit the health data from source to destination through a gateway based on cloud service using CBSOA. The fitness is newly modeled by assuming the factors like energy, distance, trust, delay, and link quality. Finally, lung cancer detection is carried out at the destination point. At the destination point, the acquired input data is fed to preprocessing phase to make the data acceptable for further mechanism using data normalization. Once the feature selection is done using Canberra distance, then the lung cancer detection is performed using shepard convolutional neural network (ShCNN). The process of routing as well as training of ShCNN is performed using the CBSOA algorithm, which is devised by the inclusion of the chronological concept into the social optimization algorithm. The proposed approach has achieved a maximum accuracy of 0.940, maximum sensitivity of 0.941, maximum specificity of 0.928, and minimum energy of 0.452. 相似文献
19.
航拍巡检是输电线路巡检的主要方式之一,目前的航拍巡检方式效率较低,受巡检员主观因素影响大,亟需一种智能检测算法自动定位并识别输电线路巡检图片中的故障。基于深度学习的航拍巡检图像目标检测技术作为一种可能的解决方案,得到了广泛关注。提出了一种利用基于区域的全卷积网络(R-FCN)的航拍巡检图像目标检测方法,并利用在线困难样本挖掘(OHEM)、样本优化、软性非极大值抑制(Soft-NMS)等改进方法进行优化。实验证明,所提方法具有目标定位准确、平均准确率高、单模型可同时检测目标种类多等特点。 相似文献
20.
在输电设备上经常会出现各种异物,如鸟巢、塑料袋,如果不能及时发现并清理将会对输电系统造成很大的安全隐患。因此,及时对输电设备是否有异物进行检测非常必要。针对该问题,提出了一种基于边缘计算和深度学习的异物检测方法。该方法与现有利用无人机拍摄传回云端服务器计算方法不同,通过将检测计算下沉到边缘设备,使用Mobilenet加上优化后SSD的目标检测方法在边缘设备直接处理计算,将检测出异物的图像发回云端。该方法在CPU上的运行速度是基于VGG(目视图像生成器)的SSD方法的5倍左右,是Faster-RCNN的58倍左右;在模型大小上是基于VGG的SSD方法的2/9左右,是Faster-RCNN的2/49左右,精确度为89%;与直接将数据传回云端服务器再进行处理的方式相比,数据传输量减少约90%。该方法不仅满足实时性,还具有可靠的效果,基于该方法的系统已经得到实际部署。 相似文献