首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
La Serena cheeses, made from Merino ewes’ raw milk, were high-pressure (HP)-treated at 300 or 400 MPa for 10 min at 10 °C, on days 2 or 50 of ripening. Cheeses treated by HP on day 2 showed higher pH values than control cheese on day 3, but cheeses treated by HP on days 2 or 50 and control cheese had similar pH values on day 60. Breakdown of caseins was delayed by HP treatment of cheeses on day 2. Cheeses treated by HP on day 2 showed higher levels of hydrophilic peptides, lower levels of hydrophobic peptides, lower hydrophobic peptides: hydrophilic peptides ratios, and higher total contents of free amino acids than those of control cheese. HP treatment of cheese on day 50 scarcely affected proteolysis of 60-day-old cheeses. Fracturability, hardness and elasticity values of cheeses treated by HP on day 2 were higher than those of control cheese and of cheeses treated on day 50. Cheeses treated at 400 MPa on day 2 received the lowest scores for quality of taste from panellists, whereas the rest of HP-treated cheeses did not differ from control cheese.  相似文献   

2.
Build-up of flavour compounds throughout ripening of raw milk cheeses may result in strong over-ripening notes during refrigerated storage. In order to control the formation of free fatty acids (FFAs) and volatile compounds, and the appearance of off-odours, raw milk cheeses were high-pressure-processed (HPP) 21 or 35 days after manufacture at 400 or 600 MPa. Ripening proceeded at 8 °C until day 60 and, afterwards, cheeses were held at 4 °C until day 240. The effect of HPP on the formation of FFAs and volatile compounds was dependent on pressure level and cheese age at the time of treatment. On day 60, acetic and propionic acids, branched-chain FFAs and short-chain FFAs showed the lowest (p?<?0.05) concentrations in cheeses treated at 400 or 600 MPa on day 21, while medium- and long-chain FFAs were at similar levels in all cheeses. HPP influenced significantly (p?<?0.05) 84 out of the 94 volatile compounds found in cheese. On day 60, the lowest (p?<?0.05) concentrations of acids, alcohols and esters were recorded for cheeses treated at 400 or 600 MPa on day 21, and the lowest (p?<?0.05) concentrations of ketones for cheeses treated at 400 MPa on days 21 or 35. On day 240, all HPP cheeses showed lower (p?<?0.05) concentrations of aldehydes, esters and, particularly, sulphur compounds than control cheese, which exhibited putrid and rancid off-odours from day 120 onwards. Principal component analysis combining FFAs and volatile compounds discriminated 240-day control cheese from 120-day control cheese and both from the rest of cheeses.  相似文献   

3.
La Serena cheeses made from raw Merino ewe's milk were high-pressure (HP) treated at 300 or 400 MPa for 10 min on d 2 or 50 after manufacture. Ripening of HP-treated and control cheeses proceeded until d 60 at 8°C. Volatile compounds were determined throughout ripening, and analysis of related sensory characteristics was carried out on ripe cheeses. High-pressure treatments on d 2 enhanced the formation of branched-chain aldehydes and of 2-alcohols except 2-butanol, but retarded that of n-aldehydes, 2-methyl ketones, dihydroxy-ketones, n-alcohols, unsaturated alcohols, ethyl esters, propyl esters, and branched-chain esters. Differences between HP-treated and control cheeses in the levels of some volatile compounds tended to disappear during ripening. The odor of ripe cheeses was scarcely affected by HP treatments on d 2, but aroma quality and intensity scores were lowered in comparison with control cheese of the same age. On the other hand, HP treatments on d 50 did not influence either the volatile compound profile or the sensory characteristics of 60-d-old cheese.  相似文献   

4.
The effect of high-pressure (HP) treatment (400 MPa, 600 MPa) on ripening of mature 42-day-old Irish blue-veined cheese was studied. Counts of non-starter lactic acid bacteria, lactococci, yeasts, moulds, enterococci and total aerobic bacteria significantly decreased due to HP, with moulds being most sensitive and 600 MPa the most effective treatment. The levels of pH 4.6-soluble nitrogen and (12%) trichloroacetic acid-soluble nitrogen increased immediately after both HP treatments; however, after 28 days of storage, values were lower in HP-treated cheeses than in the control cheese. Urea-polyacrylamide gel electrophoresis showed increased breakdown of β-casein due to HP treatment at both 400 MPa and 600 MPa. Levels of free fatty acids were lower in HP-treated cheese than in the control, but not significantly so, and no significant changes could be observed in the level of flavour compounds of blue-veined cheese. Overall, HP treatment of blue-veined cheese reduced microbiological activity and decelerated proteolysis, with no statistically significant effects on development of flavour compounds.Industrial relevanceHigh-pressure treatment has been studied for the past 100 years; nevertheless, it was not applied in dairy industry, until recently, for a cheese spread. In this study, HP-induced inactivation of microbes and enzymes, which could arrest the ripening of high-quality mature (i.e., ripened) Irish farmhouse blue-veined cheese and thus extend shelf-life at optimal quality, was examined.  相似文献   

5.
The cheese-making characteristics of high-pressure (HP)-treated milk were examined. The rennet coagulation time of pasteurised milk decreased after HP treatment at 400 MPa but increased after treatment at 600 MPa. The L-value (whiteness) of milk decreased directly after HP treatment but, over the course of coagulation, whiteness of HP-treated milk increased to the same level as in the control. Cheddar cheese was then manufactured from raw whole milk or whole milk treated by high-pressure (HP) at 400 MPa (HP400) or 600 MPa (HP600) for 10 min at 20 °C. HP treatment of raw milk at 600 MPa resulted in a 3.66 log reduction in the initial counts of non-starter lactic acid bacteria (NSLAB), decreased protein and fat content, as well as a lower pH compared to the control. Furthermore, higher treatment pressures resulted in increased incorporation of β-lactoglobulin into the cheese curd, with parallel increases in yield by 1.23% and 7.78% for HP400 and HP600 cheeses, respectively. Overall, this study showed that the effects of HP treatment on milk proteins increased rennet coagulation times and changes in cheese composition at day 1.Industrial relevanceHigh-pressure treatment is a novel technology which has been applied to a number of commercial food products. In this study, HP-induced changes in milk proteins resulted in increased cheese yields and increased cheese whiteness. In addition, HP treatment significantly reduced the microflora of raw milk cheese. Those attributes could be of interest for both industry and consumer.  相似文献   

6.
7.
The effect of milk inoculation with a bacteriocin-producing (BP) culture and of high-pressure (HP) treatment of 15-day-old Hispánico cheeses (400 MPa, 5 min, 10 °C), separately or combined, on the release of intracellular esterases and cheese lipolysis was investigated. Esterase activity and free fatty acids (FFAs) content increased during ripening of Hispánico cheese and palmitic, oleic and stearic acids being the most abundant FFAs. On day 15, the highest esterase activity was recorded for HP-treated BP cheese. The activity for HP-untreated BP cheese was the next highest. No difference in the activities was found between HP-treated and untreated cheeses made without BP culture. Total FFAs on day 15 were at a lower concentration in BP cheeses than in cheeses made without BP culture, probably due to the lower pH values of the former. The rate of total FFA accumulation from day 15 to day 50 was higher in BP cheeses (31.1–32.1% increase) than in cheeses made without BP culture (19.3–21.7% increase). The highest total FFA concentration on day 50 (612 mg kg−1) was found for HP-untreated cheese made without BP culture.  相似文献   

8.
High-pressure-processing (HPP) at 400 or 600 MPa was applied to cheeses made from ewe raw milk, on days 21 or 35 after manufacturing, to reduce proteolysis and prevent over-ripening. The characteristics of HPP and non-pressurized (control) cheeses were compared during ripening at 8 °C until day 60 and further storage at 4 °C until day 240. HPP and control cheeses showed similar pH values throughout ripening, but on day 240 pH values remained 0.4–0.6 units lower for HPP cheeses than for the control cheeses. Casein degradation was significantly retarded in the 600 MPa cheeses. Their α-casein concentration was 48–52 % higher on day 60 and 30–33 % higher on day 240 than in the control cheeses while β-casein concentration was 25–26 % higher on day 60 and 100–103 % higher on day 240. No significant differences in para-κ-casein concentration between cheeses were found on day 60, but on day 240, it was 22–35 % higher in the 600 MPa cheeses than in the control cheese. Hydrophilic peptides, hydrophobic peptides and total free amino acids evolved similarly in HPP and control cheeses during the 60-day ripening period. However, on day 240 hydrophilic peptides were at 34–39 % lower levels in the 600 MPa cheeses than in the control cheeses, hydrophobic peptides at 7–16 % lower levels and total free amino acids at 25–29 % lower levels. Flavour intensity scores increased at a slower rate in HPP cheeses than in the control cheese. Flavour quality declined markedly in the control cheeses during refrigerated storage while it did not vary significantly in 600 MPa cheeses.  相似文献   

9.
Penicillium roqueforti plays an important role in the ripening of blue-veined cheeses, mostly due to lactic acid consumption and to its extracellular enzymes. The strong activity of P. roqueforti proteinases may bring about cheese over-ripening. Also, free amino acids at high concentrations serve as substrates for biogenic amine formation. Both facts result in shorter product shelf-life. To prevent over-ripening and buildup of biogenic amines, blue-veined cheeses made from pasteurized ovine milk were high-pressure treated at 400 or 600 MPa after 3, 6, or 9 wk of ripening. Primary and secondary proteolysis, biogenic amines, and sensory characteristics of pressurized and control cheeses were monitored for a 90-d ripening period, followed by a 270-d refrigerated storage period. On d 90, treatments at 400 MPa had lowered counts of lactic acid bacteria and P. roqueforti by less than 2 log units, whereas treatments at 600 MPa had reduced lactic acid bacteria counts by more than 4 log units and P. roqueforti counts by more than 6 log units. No residual α-casein (CN) or κ-CN were detected in control cheese on d 90. Concentrations of β-CN, para-κ-CN, and γ-CN were generally higher in 600 MPa cheeses than in the rest. From d 90 onwards, hydrophilic peptides were at similar levels in pressurized and control cheeses, but hydrophobic peptides and the hydrophobic-to-hydrophilic peptide ratio were at higher levels in pressurized cheeses than in control cheese. Aminopeptidase activity, overall proteolysis, and free amino acid contents were generally higher in control cheese than in pressurized cheeses, particularly if treated at 600 MPa. Tyramine concentration was lower in pressurized cheeses, but tryptamine, phenylethylamine, and putrescine contents were higher in some of the pressurized cheeses than in control cheese. Differences in sensory characteristics between pressurized and control cheeses were generally negligible, with the only exception of treatment at high pressure level (600 MPa) at an early ripening stage (3 wk), which affected biochemical changes and sensory characteristics.  相似文献   

10.
Enzyme-rich cheeses are prone to over-ripening during refrigerated storage. Blue-veined cheeses fall within this category because of the profuse growth of Penicillium roqueforti in their interior, which results in the production of highly active proteinases, lipases, and other enzymes responsible for the formation of a great number of flavor compounds. To control the excessive formation of free fatty acids (FFA) and volatile compounds, blue-veined cheeses were submitted to high-pressure processing (HPP) at 400 or 600 MPa on d 21, 42, or 63 after manufacture. Cheeses were ripened for 30 d at 10°C and 93% relative humidity, followed by 60 d at 5°C, and then held at 3°C until d 360. High-pressure processing influenced the concentrations of acetic acid and short-chain, medium-chain, and long-chain FFA. The effect was dependent on treatment conditions (pressure level and cheese age at the time of treatment). The lowest concentrations of acetic acid and FFA were recorded for cheeses treated at 600 MPa on d 21; these cheeses showed the lowest esterase activity values. Acetic acid and all FFA groups increased during ripening and refrigerated storage. The 102 volatile compounds detected in cheese belonged to 10 chemical groups (5 aldehydes, 12 ketones, 17 alcohols, 12 acids, 35 esters, 9 hydrocarbons, 5 aromatic compounds, 3 nitrogen compounds, 3 terpenes, and 1 sulfur compound). High-pressure processing influenced the levels of 97 individual compounds, whereas 68 individual compounds varied during refrigerated storage. Total concentrations of all groups of volatile compounds were influenced by HPP, but only ketones, acids, esters, and sulfur compounds varied during refrigerated storage. The lowest total concentrations for most groups of volatile compounds were recorded for the cheese pressurized at 600 MPa on d 21. A principal component analysis combining total concentrations of groups of FFA and volatile compounds discriminated cheeses by age and by the pressure level applied to HPP cheeses.  相似文献   

11.
Cheese ripening acceleration is of continuous interest for the industry. High-pressure (HP) treatment of starter cultures used in cheese-manufacturing offers the potential to accelerate ripening by increasing the activity of their intracellular peptidases that contribute in the development of desired cheese organoleptic characteristics.The objective of the present research was the investigation of the effect of HP treatment (200 MPa-20 °C - 20 min) directly on white brined cheese or on the starter culture used for its manufacture (Str. thermophilus:L. lactis:L. bugaricus 2:1:1). For this purpose, the microbial, textural, physicochemical and organoleptic characteristics and proteolysis were assessed during the 2nd stage of ripening in cold stores. Control cheese without any treatment was also studied.Cheeses made with HP-treated starters had increased secondary proteolysis. Organoleptic scoring of these cheeses was higher during the whole storage period compared to control and HP-treated cheese. Their superiority was evident even at the early stages of ripening in cold stores, since no bitterness was detected. On the contrary, although HP treated cheeses showed the highest increase in aminopeptidases activities, this was not correlated with the studied ripening indices or the organoleptic characteristics.According to the results, HP-treated starter culture can accelerate proteolysis and potentially the ripening of cheese-in-brine.Industrial relevanceThe data obtained from this work suggest that application of HP treatment under optimized conditions on cheeses in brine starter cultures or on whole cheeses can be effectively used for the production of products with reduced ripening time. This is of great importance for the cheese industries, since the storage period for ripening is long (higher than two months), while applying HP treatment as suggested in this study, this time may be reduced to less than one month, producing cheeses of superior quality.  相似文献   

12.
High-pressure (HP) treatment of curd at low temperatures, on top of efficiently reducing microbial loads while maintaining most of the enzymatic activity, can be useful to overcome the seasonal shortage in ovine milk production. In this work, raw ovine milk curds were subjected to a wide range of HP treatments and, after frozen storage, used in the manufacture of Hispánico cheese. Confocal scanning laser microscopy of HP-treated curds showed increasing denser and more compact protein networks with the pressure applied. Although no differences in overall porosity were recorded between HP-treated and non-pressurised curds, HP treatment lowered pore number and modified pore size and shape. Whereas confocal scanning laser microscopy of control cheese showed open structures with numerous and irregular cavities, additional highly compact protein network areas could be observed in experimental cheeses micrographs. These differences trailed off with time and were no longer observed after 60 days of ripening. Experimental cheeses had significantly lower dry matter values than control cheese, and higher proteolytic indexes. Their texture was less firm than that of control cheese throughout the whole ripening period, requiring less force to be broken and deformed. Experimental cheeses showed lower lightness values than control cheese after 30 days of ripening, but no differences were found after 60 days. Our results indicate that frozen storage of HP-treated curds from ovine milk is a viable option for the production of Hispánico cheese.  相似文献   

13.
《International Dairy Journal》2005,15(6-9):893-900
The combined effect of high-pressure (HP) treatment and bacteriocin-producing lactic acid bacteria (BP-LAB) on the survival of Listeria monocytogenes Scott A in cheeses made from raw milk that was inoculated with the pathogen at 4.80 log cfu mL−1, a commercial starter and one of seven strains of BP-LAB was investigated. On day 3, the counts of L. monocytogenes were 7.03 log cfu g−1 in a control cheese (without BP-LAB, not HP treated), 6.06–6.74 log cfu g−1 in cheeses with BP-LAB, 6.13 log cfu g−1 in a cheese without BP-LAB and treated on day 2 at 300 MPa, 2.01 log cfu g−1 in a cheese without BP-LAB and treated on day 2 at 500 MPa, 3.83–5.43 log cfu g−1 in cheeses with BP-LAB and treated on day 2 at 300 MPa, and 1.81 log cfu g−1 or less in cheeses with BP-LAB and treated on day 2 at 500 MPa. HP treatment was more effective on day 51 than on day 2.  相似文献   

14.
15.
The free fatty acid (FFA) profile of high pressure treated ewes' milk cheeses were studied to assess the effect of pressure treatment on cheese lipolysis. Cheeses were treated at 200, 300, 400 or 500 MPa (2P to 5P) at two stages of ripening (after 1 and 15 days of manufacturing; P1 and P15) and FFA were assayed at 1, 15 and 60 d ripening. On the first day of ripening, 3P1-cheeses showed levels of FFA twice that of the control cheeses. However, no significant differences were found between 3P1 and control cheeses at 60 d ripening. On the contrary, 4P1 and 5P1-cheeses had the lowest total FFA levels. The point at which pressure treatment was applied influenced the FFA profile of cheeses; cheeses pressurized at pressures<400 MPa on the first day of ripening were more similar to untreated cheeses than their homologues treated at 15 d.  相似文献   

16.
The effect of high pressure (HP) on Salmonella Enteritidis in sliced dry-cured ham stored under temperature abuse (8°C) during 60d was investigated. After treatment, reductions of S. Enteritidis were 1.06, 2.54 and 4.32 log units in ham treated at 400, 500 and 600MPa for 5min at 12°C, compared to non-pressurized samples. After 60d, counts of S. Enteritidis in ham treated at 400 and 500MPa were 2.56 and 2.66 log units lower than in non-treated ham, whereas the pathogen was only detected after enrichment in ham treated at 600MPa. Lipid oxidation increased with storage and pressurization, whereas total free amino acid contents were similar in HP and control samples after 60d. Dry-cured ham treated at the highest pressures exhibited lower shear resistance, whereas the maximum force to compress the sample was slightly changed. Color (L*, a* and b*) varied with pressurization and storage. Changes induced by HP in dry-cured ham were attenuated during storage.  相似文献   

17.
The effect of high pressure (HP; 300 and 400 MPa for 5 min at 6 °C) on physico-chemical, microbial, color, texture and sensorial characteristics of starter-free fresh cheeses stored at 4 and 8 °C was studied. Physico-chemical parameters considered were total solids, fat, total protein, pH, whey loss and water activity. The microbiological quality was studied, on cheeses stored at 4 and 8 °C, by enumerating aerobic mesophilic bacteria, lactococci, psychrotrophic bacteria, Enterobacteriaceae, Escherichia coli, molds and yeasts. Cheeses treated at 300 and 400 MPa, stored at 4 °C, presented a shelf-life of 14 and 21 days, respectively, compared to untreated control cheese, which presented a shelf life of 7 days. On the other hand, HP treatments modified the texture (more firm) and color (more yellow) compared to control cheeses. These changes were detected by instrumental and sensory analysis.  相似文献   

18.
Ovine brined cheese was high-pressure (HP) treated at 200 or 500 MPa for 15 min at 20 °C on the 15th day of ripening. Compared to control cheese, HP treatment did not affect significantly (P > 0.05) the pH values, moisture, fat in dry matter, protein in dry matter and salt in moisture contents of cheeses at 90 days. The counts of total aerobic mesophilic bacteria, thermophilic lactococci, thermophilic lactobacilli and non starter lactic acid bacteria (NSLAB) were not affected by HP treatment of cheese at 200 MPa throughout ripening. After 90 days of ripening, the same microbial groups in cheese treated at 500 MPa were about 1.2, 3.6, 2.1 and 4 log units lower than in control cheese respectively. Coliforms were reduced faster at non detectable levels in HP treated cheeses than in control cheese. Regarding the bacterial enzymatic activities in cheese, aminopeptidase activity (Apep) was marginally favoured by both HP treatments. However, its activity was decreased at 90 days due probably to loss in brine. In contrast, lactate dehydrogenase (LDH) activity, following the bacteria cell lysis, was negatively affected by HP treatment at 500 MPa throughout ripening.Industrial relevanceThe data obtained from this work suggest that application of HP treatment under optimized conditions on ovine cheese in brine can be used to reduce effectively the undesirable microbial load in it and to cause moderate enhancement of aminopeptidase activity, without modifying its composition.  相似文献   

19.
Freshly prepared rennet-coagulated soft cheese was high-pressure (HP) treated at up to 291 MPa and 29 min and using a full 2-factor central composite design of experiment, its physico-chemical properties (colour, fat, lipid oxidation, moisture and protein content, pH, and texture) were examined. HP treatment influenced significantly (p < 0.05) the colour, fat, moisture, lipid oxidation, hardness and adhesiveness of the fresh cheese. Fat content increased apparently as moisture decreased significantly after HP treatment of above 100 MPa. Increased pressures reduced lipid oxidation but increased yellowness although the latter showed more effect over redness in the HP-treated fresh cheese. Also, increased pressures increased hardness, decreased acidity and adhesiveness in HP-treated fresh cheese although increased exposure was found to increase acidity.Industrial relevanceHigh isostatic pressure for processing fresh cheese is yet to be adopted on an industrial scale. There is a need for research to provide evidence that improved properties of fresh cheese can be realized. The effects of HPP on rennet-coagulated soft Scottish cheese are investigated and the data from this study have provided points where optimized characteristic properties of HPP fresh cheese can be attained, which can serve as a lead for HPP users on fresh cheese.  相似文献   

20.
High Pressure (HP) treatment of milk prior to cheese-making was shown to increase the yield of cheese due to increased protein and moisture retention in cheese. Cheeses were made with raw milk or milk treated with high temperature short-time (HTST) pasteurization, and HP treatments at two levels (483 and 676 MPa) at 10 °C, 483 MPa HP at 30 °C, and 483 MPa HP at 40 °C. Cheese yield, total solids, protein, fat and salt contents were evaluated, and fat and protein recovery indices were calculated. Cheeses from HP treatments of 676 MPa at 10 °C and 483 MPa at 30 °C exhibited wet yields of 11.40% and 11.54%, respectively. Protein recovery was 79.9% for HP treatment of 676 MPa at 10 °C. The use of slightly higher pressurization temperatures increased moisture retention in cheese. Visco-elasticity of cheeses was determined by dynamic oscillatory testing and a creep-recovery test. Rheological parameters such as loss (G″) and storage (G′) moduli were dependent on oscillation frequency. At high (173 rad/s) and low (2.75 rad/s) angular frequencies, cheeses made from milk treated at 483 MPa at 10 °C behaved more solid-like than other treatments. Creep tests indicated that cheeses from milk treated with 483 MPa HP at 10 °C showed the smallest instantaneous compliance (Jo), confirming the more solid-like behavior of cheese from the 483 MPa at 10 °C treatment compared to the behavior of cheeses from other treatments. Cheeses made with pasteurized milk were more deformable, exhibited less solid-like behavior than cheeses made with HP treated milk, as shown by the Jo value. With more research into bacteriological implications, HP treatment of raw milk can augment Cheddar cheese yield with better curd formation properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号