首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
混杂纤维增强水泥基复合材料的力学性能   总被引:2,自引:0,他引:2       下载免费PDF全文
研究了化学改性聚丙烯(PP)纤维以及掺加聚丙烯纤维和芳纶纤维混杂比例和混杂效应对水泥基复合材料力学性能的影响,并构建了纤维增强水泥砂浆界面层的物理模型,描述了纤维对水泥砂浆的增强机制。实验表明,聚丙烯纤维经改性后使水泥砂浆前期抗折强度明显提高,聚丙烯纤维和芳纶纤维的混杂使水泥砂浆的后期抗折强度显著提高。改性聚丙烯纤维掺加体积分数为0.56%,芳纶纤维的体积分数为0.24%时,混杂纤维增强水泥砂浆试样较空白试样,3天、28天抗折强度分别提高了18.48%、31.17%,3天、28天抗压强度分别提高了7.16%、5.19%。  相似文献   

2.
Kenaf fibre reinforced polypropylene composites were manufactured by compression moulding. The kenaf fibre was considered in three forms; untreated, treated with sodium hydroxide solution and treated with sodium hydroxide solution followed by three-aminopropyltriethoxysilane. The effects of these chemical treatments on the tensile and flexural properties of the composites were investigated. Mechanical test results show that alkali treatment followed by three-aminopropyltriethoxysilane treatment (alkali–silane treatment) significantly improves the tensile and flexural properties of short fibre non-woven kenaf polypropylene composites. In particular, the specific tensile and flexural strengths of alkali–silane treated kenaf composites with 30% fibre mass fraction are, respectively, only 4% and 11% lower than those of composites made using glass fibre. Scanning electron microscopy examination shows that the improvements in the tensile and flexural properties resulting from alkali–silane treatment can be attributed to better bonding between the fibres and matrix.  相似文献   

3.
采用层合热压实验法将玻璃纤维基毡与聚丙烯薄膜复合制成不同玻纤含量的玻纤增强聚丙烯(GF/PP)复合板材,在不同的加载速率下进行拉伸测试,研究GF/PP复合材料的应变率敏感特性,分析Burgers模型对该材料本构关系拟合预测的可行性。结果表明:GF/PP复合材料在低应变率范围内对应变率是敏感的,随应变率的增加,其断裂应力和抗拉强度增大;随玻璃纤维含量的增加,其所对应的应变率效应反而有所下降。同时,Burgers模型能够有效地拟合预测出该材料的拉伸应力-应变曲线,与实验曲线相比,进一步验证了GF/PP复合材料的应变率敏感特性及其变化趋势。  相似文献   

4.
Flexural tensile tests are usually used to evaluate the suitability of fibre‐reinforced concrete (FRC) in structural applications. The constitutive relationships of FRC are derived from such tests by using several inverse analyses. Given that the structural design of FRC is based on the residual load‐bearing capacities obtained under flexural tests, the approach to analyse fracture behaviour by means of uniaxial tensile tests would mean use of more direct and reliable constitutive curves compared with those obtained by indirect means. The significance of this paper lies in the characterisation of polyolefin fibre–reinforced concrete (PFRC) not only by using fracture flexural results tests but also by comparing such results with the direct tensile behaviour of the material obtained from uniaxial tests. This comparison would both extend the knowledge of the PFRC mechanical properties and broaden the reliability of structural design by comparing the behaviour of PFRC under flexural and tensile stresses. Moreover, the suitability of an iterative method proposed by the authors for obtaining the constitutive relations of PFRC from flexural tests has been checked by performing a series of numerical simulations of the tensile tests performed. The differences in the properties obtained in the flexural tests and the tensile tests have been assessed. The experimental results gathered from the tensile tests have been accurately reproduced by using a cohesive crack approach with trilinear softening functions by the iterative inverse analysis proposed.  相似文献   

5.
Practical manufacturing and use of thin cement-based elements composites require an industrial cost-effective production process in addition to proper reinforcement materials to improve the tensile and flexural performance. Reinforcement by means of fabric materials is an alternative to the use of short fibers. The objective of this study was to investigate use of pultrusion technique as a cost-effective method for the production of thin-sheet fabric-reinforced cement composites. Woven fabrics made from low modulus polypropylene (PP) and glass meshes were used to produce the pultruded cement composites. The influence of fabric type, PP and glass, processing method, pultrusion vs. cast and cement-based matrix modification were examined. Tensile and pullout tests as well as Scanning Electron Microscopy (SEM) observations were used to examine the mechanical, bonding and microstructure properties of the different composites. The rheology of the mix was correlated with the mechanical behavior of the pultruded composites. The tensile behavior of the pultruded fabric–cement components exhibited strain hardening behavior. The best performance was achieved for the PP pultruded composites.  相似文献   

6.
In this paper the elastic-plastic model of flexural behaviour of beams is applied to hybrid composites containing aramid fibres. In the hybrids, as in the parent aramid-fibre-reinforced composite, the neutral axis is shifted toward the tensile face. The shift depends on the quantity and placement of the aramid fibre. The analysis and experimental work reported here relate to two fundamental sandwich hybrids, one with aramid fibres in the skins and carbon or glass fibres in the core, and the other with aramid fibre in the core and carbon or glass fibres in the skins. The flexural behaviour of the hybrids is discussed in terms of the effect of the placement of the aramid layer and of the relative thickness of the skin on the ultimate stresses, the elastic-plastic behaviour and the mode of failure.  相似文献   

7.
A constitutive model consisting of a tri-linear tensile stress-strain with residual strength was applied in characterization and prediction of long term flexural behavior of several cement-based composite materials. Flexural test results were back-calculated to obtain material parameters and establish their relationship with aging. The material behavior is described by tensile stress-strain parameters consisting of elastic modulus, first cracking strain, post cracking stiffness, ultimate strain, and a residual strength parameter. The relationships between the material parameters and age were established by studying the time dependent flexural performance of various composites with glass and natural fibers as reported by Litherland et al. (1981), Marikunte et al. (1997), Bartos et al. (1996), and natural fibers reported by Toledo-Filho et al. (2000). An analytical model for prediction of rate and extent of damage as a function of time and temperature is proposed for degradation of flexural behavior of strain softening and hardening fiber reinforced concrete subjected to aging. This model is applicable to long-term durability of different classes of materials subject to accelerated aging under different environmental conditions.  相似文献   

8.
Natural fiber reinforced polymer composites became more attractive due to their light weight, high specific strength, and environmental concern. However, some limitations such as low modulus, poor moisture resistance were reported. This study aimed to investigate the effect of glass fiber hybridization on the physical properties of sisal–polypropylene composites. Polypropylene grafted with maleic anhydride (PP-g-MA) was used as a compatibilizer to enhance the compatibility between the fibers and polypropylene. Incorporating glass fiber into the sisal–polypropylene composites enhanced tensile, flexural, and impact strength without having significant effect on tensile and flexural moduli. In addition, adding glass fiber improved thermal properties and water resistance of the composites.  相似文献   

9.
利用层内混杂的方式制备碳/芳纶纤维混杂纬编双轴向多层衬纱织物,通过对材料进行拉伸、三点弯曲等实验研究该织物增强复合材料的力学性能及混杂比对其力学性能的影响。结果表明,按照一定的混杂比加入芳纶纤维后复合材料的拉伸性能提高,表现出积极的混杂效应。由于延伸性好的芳纶纤维的加入,使复合材料的拉伸断裂伸长率明显提高,材料破坏模式出现了完全脆性断裂模式(C12材料破坏形式)和“扫帚”形纤维断裂模式(C8A4,C6A6材料破坏形式)。此外,按照一定的混杂比加入芳纶纤维也有效改善了碳纤维增强复合材料的破坏韧性,碳/芳纶纤维混杂MBWK织物增强复合材料的弯曲强度和弯曲模量随混杂比的提高而呈下降趋势,当复合材料中芳纶含量从42%(体积分数,下同)(C6A6)到59.2%(C4A8)的变化过程中,弯曲强度和弯曲模量的降低率较高。0°试样在混杂比为59.2%(C4A8)时,弯曲挠度最大,达到7.49 mm,远高于纯芳纶纤维或纯碳纤维增强的复合材料。所有90°混杂复合材料试样的弯曲挠度均高于纯芳纶纤维或纯碳纤维增强的复合材料,表现出积极的混杂效应。  相似文献   

10.
Damage mechanism in glass textile-reinforced concrete (TRC) with and without the addition of Alkali resistant short glass fibers under high speed tensile loading was investigated. The high strain rates ranging from 25 to 100 s−1 were achieved using a high speed servo-hydraulic testing machine. Image analysis by means of digital image correlation (DIC) method was used to obtain the evolution of crack width which was subsequently correlated with stress response. The non-uniform strain distribution was characterized as three distinct response zones of localization, shear lag, and uniform strain and quantitatively measured in each zone. Mechanism corresponding to the basic aspects of tension stiffening modeling were identified by computing the average stress in the matrix phase between two cracks. The width of crack localization zone as well as crack spacing were also obtained using DIC as indications of bonding properties. A finite difference method simulating tension stiffening behavior was employed to predict crack spacing and stress–strain responses of TRC systems. Improvements in bond properties and mitigation of cracking with the addition of short fibers were verified using multiple methods.  相似文献   

11.
This study investigates the influence of maleicanhydride-modified polypropylene (m-PP) on monotonic mechanical properties of continuous-glass-fibre-reinforced polypropylene (PP) composites. Maleicanhydride-modified polypropylene was added to the PP homopolymer to improve the adhesion between the matrix and the glass fibre. Three-point bending tests were performed on 0° and 90° unidirectional glass-fibre/PP laminates with various weight fractions of m-PP in the PP matrix. These tests showed an increase in both longitudinal and transverse flexural strength up to 10 wt% m-PP, whereas at higher weight fractions of m-PP a decrease in flexural strength was observed. No significant influence of m-PP on composite stiffness was observed. Additional mechanical tests on unidirectional glass/PP composites with 0 wt% and 10 wt% m-PP showed only a small increase in fibre-dominated properties such as longitudinal tensile strength and strain, whereas composite properties that are governed by the interphase, such as transverse, shear and compressive strength, showed significant increases as a result of matrix modification and an enhanced interaction between the glass fibres and the PP matrix.  相似文献   

12.
《Composites Part A》2002,33(1):43-52
Short bamboo fiber reinforced polypropylene composites (BFRP) and short bamboo–glass fiber reinforced polypropylene hybrid composites (BGRP) were fabricated using a compression molding method. Maleic anhydride polypropylene (MAPP) was used as a compatibilizer to improve the adhesion between the reinforcements and the matrix material. By incorporating up to 20% (by mass) glass fiber, the tensile and flexural modulus of BGRP were increased by 12.5 and 10%, respectively; and the tensile and flexural strength were increased by 7 and 25%, respectively, compared to those of BFRP. Sorption behavior and effects of environmental aging on tensile properties of both BFRP and BGRP systems were studied by immersing samples in water for up to 1200 h at 25°C. Compared to BFRP, a 4% drop in saturated moisture level is seen in BGRP. After aging in water for 1200 h, reduction in tensile strength and modulus for BGRP is nearly two times less than that of BFRP. Use of MAPP as coupling agent in the polypropylene matrix results in decreased saturated moisture absorption level and enhanced mechanical properties for both BFRP and BGRP systems. Thus it is shown that the durability of bamboo fiber reinforced polypropylene can be enhanced by hybridization with small amount of glass fibers.  相似文献   

13.
In this study, two types of thermoplastic matrices (low melting point polyethylene terephthalate (LPET) fiber and polypropylene (PP) fiber) and glass fiber/epoxy resin/multi-walled carbon nanotubes (MWCNTs) were used to fabricate the thermoplastic and thermoset composite materials with 3D biaxial warp-knitted fabrics. Thermoplastic and thermoset composites were fabricated using hot-press and resin transfer molding (RTM) methods. The fabricated samples were tested with tensile and three-point flexural tests. In thermoplastic composites, samples in the 90° direction and LPET matrix showed the best tensile and flexural properties with an improvement of 39 and 21% tensile modulus and strength, 16 and 8% flexural modulus and strength compared to the PP samples in the same direction. In thermoset composites, samples in the 90° direction and MWCNTs showed the best improvement of the flexural modulus and strength with 97 and 58% compared to the samples without MWCNTs. This improvement can most likely be attributed to an increase in interfacial adhesion due to the presence of the carbon nanotubes.  相似文献   

14.
A model simulating the tensile behavior of fabric–cement composites is presented to relate the properties of the matrix, fabric, interface and the damage parameters to the overall mechanical response of the composites. Crack spacing parameters measured during tensile tests are used to define the damage parameters, and related to the stiffness degradation as a function of the applied strain. This procedure is integrated in composite laminate theory using an incremental approach to model the uniaxial tensile response. Two approaches of linear and nonlinear fabric bridging models are used. The model is capable of using interface parameters for different fabrics, matrix properties, and processing parameters. Simulation results are studied by means of parametric simulation and a validation of a variety of experimental observations which vary the matrix formulation with flyash, changes in pressure after casting, and fabric type.  相似文献   

15.
《Composites Part A》1999,30(6):815-822
Glass fibre mat was prepared by the fibre mat-manufacturing machine developed in our laboratory. Glass fibre mat reinforced polypropylene (PP) composites were fabricated with the variation of glass fibre content. Tensile, flexural and high rate impact test was conducted to investigate the effect of glass fibre content on the mechanical properties of the glass fibre mat/PP composite. Deformation and fracture behaviour of the glass fibre mat/PP composites was investigated to study the relationship with the mechanical property data. The tensile and flexural modulus increased with the increment of glass fibre content. However, the tensile and flexural strengths exhibited maximum values and showed a decrease at the higher glass fibre content than this point. The impact absorption energy also exhibited a similar result with the tensile and flexural property data.  相似文献   

16.
The reinforcement of cement with glass fibre textiles imbues the composite with a tensile as well as compressive load-bearing capacity. The tensile capacity allows the elimination of steel reinforcement as well as the concrete corrosion cover in structural applications. With textile reinforced concrete (TRC) thin and/or free form shells could be realized. In this paper, a parametric study is used to evaluate the structural applicability of TRC for small span (2–15 m) doubly curved roof shells. The application of two different, existing TRC material combinations demonstrates the influence of the applied composite material on the design of the shell.  相似文献   

17.
Fabric–cement composites developed using the pultrusion production process have demonstrated impressive tensile and flexural properties. For instance fabric reinforced composites with bonded Alkali Resistant (AR) glass fabrics exhibit strain-hardening behavior, tensile strength in the range of 20–25 MPa, and strain capacity of the order of 2–5% under static conditions. Properties of these composite systems were investigated under three point bending conditions using an instrumented drop weight impact system. Samples were studied from the viewpoint of the variations of impact load, deflection response, acceleration and absorbed energy. Development of the testing system in terms of components and acceleration response are discussed in detail. Methods of the impact load measurement using three different ways of acceleration response, piezoelectric load washer and conventional strain gage based load cell are discussed. Cement composites with two different fabric contents and four different drop heights of hammer (dropping mass) were tested. Experimental results indicate that for the same drop height, the stiffer beam type specimens have a lower ultimate deflection but a higher load carrying capacity than the plate type specimens. The maximum flexural stress and absorbed energy of composites increase with drop height. In beam specimens, complete fracture does not take place as cracks form and close due to rebound and significant microcracking in the form of radial fan cracking is observed, whereas interlaminar shear is the dominant failure mode in the plate specimens.  相似文献   

18.
Dense carbon nanotubes (CNTs) were grown uniformly on the surface of carbon fibers and glass fibers to create hierarchical fibers by use of floating catalyst chemical vapor deposition. Morphologies of the CNTs were investigated using scanning electronic microscope (SEM) and transmission electron microscope (TEM). Larger diameter dimension and distinct growing mechanism of nanotubes on glass fiber were revealed. Short carbon and glass fiber reinforced polypropylene composites were fabricated using the hierarchical fibers and compared with composites made using neat fibers. Tensile, flexural and impact properties of the composites were measured, which showed evident enhancement in all mechanical properties compared to neat short fiber composites. SEM micrographs of composite fracture surface demonstrated improved adhesion between CNT-coated fiber and the matrix. The enhanced mechanical properties of short fiber composites was attributed to the synergistic effects of CNTs in improving fiber–matrix interfacial properties as well as the CNTs acting as supplemental reinforcement in short fiber-composites.  相似文献   

19.
Hybrid composites of polypropylene reinforced with short glass fibers and short carbon fibers were prepared using extrusion compounding and injection molding techniques. The tensile properties of these composites were investigated taking into account the effect of the hybridization by these two types of short fibers. It was noted that the tensile strength and modulus of the hybrid composites increase while the failure strain of the hybrid composites decreases with increasing the relative carbon fiber volume fraction in the mixture. The hybrid effects for the tensile strength and modulus were studied by the rule of hybrid mixtures (RoHM) using the tensile strength and modulus of single-fiber composites, respectively. It was observed that the strength shows a positive deviation from that predicted by the RoHM and hence exhibits a positive hybrid effect. However, the values of the tensile modulus are close to those predicted by the RoHM and thus the modulus shows no existence of a hybrid effect. Moreover, the failure strains of the hybrid composites were found to be higher than the failure strain of the single carbon fiber-reinforced composite, indicating that a positive hybrid effect exists. Explanations for the hybrid effects on the tensile strength and failure strain were finally presented.  相似文献   

20.
纤维编织网增强混凝土的拉伸力学模型   总被引:1,自引:0,他引:1       下载免费PDF全文
通过单束纤维与纤维编织网增强混凝土(TRC)薄板的单轴拉伸试验, 研究了环氧树脂浸渍后纤维束的应力-应变关系。试验结果发现, 即使经环氧树脂浸渍, 也不能完全发挥碳纤维束的抗拉强度; 单轴拉伸碳纤维束获得的应力-应变曲线几乎是完全线性的, 在达到其极限强度80%左右出现一定的非线性特征。假定细粒混凝土开裂后只有纤维编织网承担荷载, 从而由TRC薄板试件单轴拉伸的荷载-变形关系获得的碳纤维束的应力-应变关系可合理简化为双线性的形式, 并针对本文中研究的纤维编织网给出了其相应控制参数点的取值。基于受弯构件计算理论, 采用本文纤维束拉伸模型得到的两种系列受弯构件的计算值与试验值吻合较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号