首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
通过Brinell硬度和拉伸测试以及OM,SEM和TEM的组织观察,研究了形变热处理对Al-12.0%Si-0.2%Mg合金组织与力学性能的影响.结果表明,通过形变热处理可以显著提高试验合金的硬度、强度及伸长率.该合金经500 ℃热挤压、(535±5)℃固溶、160 ℃时效12 h处理后Brinell硬度可达85.7 HBS,抗拉强度为256.3 MPa,伸长率为15.0%.热挤压过程加速共晶Si相发生碎断与球化,细小的Si颗粒分布均匀,结合强化相在时效过程中弥散析出,导致形变热处理条件下合金的强度及伸长率同时提高.SEM和TEM观察显示,合金在热挤压过程中发生了基体Al的再结晶及Si和Mg2Si相的析出.  相似文献   

2.
利用高能球磨结合放电等离子体烧结和热挤压工艺,制备出TiB_2/Al-3.8Zn-1.85Mg-1.32Cu复合材料。通过X射线衍射、扫描电镜和透射电镜表征以及拉伸力学性能测试,研究TiB_2颗粒添加量对复合材料微观组织和力学性能的影响。结果表明:高能球磨诱导TiB_2陶瓷颗粒形貌从多边形转变为近球形;随着TiB_2含量从2%增加到10%(体积分数),铝基体晶粒逐渐细化,析出相含量减少,复合材料抗拉强度、屈服强度和弹性模量分别由381MPa、231 MPa和78 GPa增加到679 MPa、645 MPa和96 GPa,伸长率从5.2%下降到1.0%;细晶强化和弥散颗粒强化为复合材料的主要强化机制。  相似文献   

3.
不同含量的TiB_2纳米颗粒(1.5%和3%)分别加入3004合金研究TiB_2纳米颗粒对Al-Mn-Mg 3004合金中高温性能的影响。透射电镜和X射线衍射结果表明,TiB_2纳米颗粒主要分布在枝晶界,尺寸在20~80 nm。因此,合金中弥散相无析出带的体积分数大幅减少,同时,TiB_2纳米颗粒的添加有效钉扎了晶界和位错的移动,从而提高了合金的强度和抗蠕变性能。在经过峰值析出热处理后,与未添加TiB_2纳米颗粒的合金相比,加入3%TiB_2纳米颗粒的3004合金在常温和300°C下的屈服强度分别提高了20%和13%。同时,该合金在300°C下的最小蠕变速率也降低至未添加TiB 2纳米颗粒合金的1/5,体现了TiB_2纳米颗粒对Al-Mn-Mg合金中高温性能的强化作用。  相似文献   

4.
瞿祥落  韩宝  赵文博  许春香 《铸造》2014,(3):275-279
采用OM、SEM、XRD和电子材料试验机研究了热处理对Mg-7Sn-4Al-2Zn-xSr(x=0,2,3,4)合金组织和力学性能的影响。结果表明,铸态和热处理后的Mg-7Sn-4Al-2Zn合金主要由α-Mg、Mg2Sn和β-Mg17Al12相组成,加入适量的Sr后,合金中形成新的Srx Mgy Snz相,组织得到了细化;合金经T6(固溶430℃保温12 h+时效250℃保温8 h)处理后,Mg2Sn和Srx Mgy Snz相更均匀的析出,弥散分布在晶界和基体中。当Sr含量为3 wt.%时,铸态和热处理态合金都表现出最佳的常温力学性能,铸态合金的抗拉强度和伸长率分别为197 MPa和5.6%,热处理后合金的抗拉强度和伸长率分别为207 MPa和8.6%,合金力学性能的提高主要是归因于晶粒细化和第二相弥散强化。  相似文献   

5.
利用光学显微镜、扫描电子显微镜,能谱分析仪、X射线衍射分析及差热分析研究了T4和T6热处理对真空压铸Mg-7Al-2Sn(AT72)合金组织和力学性能的影响。结果表明,真空压铸使得AT72合金组织更加致密,进而通过热处理可以进一步提高合金的力学性能。特别是T4固溶处理(400℃×20 h)后,晶粒尺寸变化较小,Al、Sn元素固溶到基体中产生固溶强化;同时,由于Mg17Al12相分解,使得高熔点的Mg2Sn颗粒相的析出强化效果更加明显。T4处理后的AT72合金的抗拉强度、屈服强度和伸长率达到276 MPa,202.6 MPa和10.6%,其比压铸态合金分别提高了18.2%,7.0%,24.7%。T6(400℃×20 h+200℃×15 h)处理后由于脆性相Mg17Al12的非连续析出以及Mg2Sn相粗化,使得合金的强度和塑性均有所下降。由于耐热相Mg2Sn的存在,提高了Mg17Al12相的开始熔化温度,使得AT72合金表现出比商用AZ91合金具有更好的高温力学性能。  相似文献   

6.
采用金属型铸造制备Al-11Si-2.5Cu-Mg合金,利用金相显微镜及拉伸试验等方法,研究了热处理对Al-11Si-2.5Cu-Mg合金组织及性能的影响。结果表明,最佳热处理工艺为:510℃×7h固溶+160℃×8h时效,此时合金的抗拉强度和伸长率分别达到385 MPa和8.2%。经热处理后,铸态组织的点状共晶Si相被球化,大部分Si质点都比较圆整,并在α固溶体上析出细小而弥散的Al2Cu、Mg2Si中间强化相,使合金强度得到提高。  相似文献   

7.
采用Al-K2Ti F6-K2ZrF6-KBF4体系制备(ZrB_2+TiB_2)二元纳米颗粒增强AlSi9Cu3基复合材料,并对其进行热处理,研究了颗粒加入量对复合材料组织与性能的影响。结果表明,确定的优选颗粒加入量为3.14%;铸态抗拉强度和伸长率分别为265 MPa和14.8%;时效处理后,复合材料的强度略有上升。经过T6和T7热处理后强度有了大幅度提升,拉伸断口呈明显的韧性断裂形式,T7处理的拉伸断口韧窝较清晰、伸长率高于T6。  相似文献   

8.
通过原位合成法成功制备了亚微米级TiB_2颗粒增强ZL109复合材料,测量了不同颗粒含量复合材料的弹性模量和25~400℃的抗拉强度(UTS)。结果表明,复合材料的弹性模量随颗粒含量提高而提高,颗粒含量15%(质量分数,下同)时,复合材料的弹性模量比基体合金提高了32%;抗拉强度也明显高于基体合金,10%TiB_2 /ZL109复合材料在260℃时的强度比基体合金提高了105MPa。  相似文献   

9.
采用原位自生的方法成功制备了TiB_2/A356复合材料,研究了不同TiB_2颗粒含量对TiB_2/A356复合材料组织及力学性能的影响。结果表明,TiB_2颗粒的尺寸为150~560nm时对复合材料有显著地细化、抑制枝晶长大的作用。随着TiB_2颗粒含量的增加,复合材料的强度随之升高而伸长率降低。复合材料的屈服强度为242~265 MPa,抗拉强度为270~297 MPa,伸长率为4.2%~5.8%。  相似文献   

10.
基于交通、航空航天等领域高强韧精密复杂零件免热处理的需求,采用原位生成反应法制备了(TiB_(2)+ZrB_(2))/Al-Mg-Mn基复合材料,对比研究了重力铸造和挤压铸造制备的(TiB_(2)+ZrB_(2))/Al-Mg-Mn基复合材料的微观组织和力学性能。结果表明:原位生成反应法制备的复合材料中生成了大量纳米级的TiB_(2)和ZrB_(2)颗粒。拉伸实验结果表明,挤压铸造复合材料试样的抗拉强度、屈服强度和伸长率分别为296 MPa、185 MPa和12.2%,这些参数比重力铸造成型的Al-Mg-Mn合金分别提高了57%、95%和40%;比重力铸造复合材料分别提高了12%、11%和36%。分析发现,复合材料相比无添加Al-Mg-Mn合金强韧性能更高的原因在于TiB_(2)和ZrB_(2)颗粒协同增强细晶强化作用;而挤压铸造成型的复合材料的力学性能优于重力铸造成型的复合材料的主要原因在于挤压力所致的晶粒细化和Orowan强化作用。  相似文献   

11.
基于激光熔化沉积技术进行了高强度锻造型2A50铝合金增材制造实验,为了提高增材构件的综合力学性能,开展了增材制造高强度铝合金的热处理工艺研究。结合X射线衍射分析仪(XRD)、扫描电子显微镜(SEM)、显微硬度仪以及拉伸试验等检测手段,研究了不同热处理工艺参数对增材试样微观组织及力学性能的影响规律。结果表明:沉积态试样具有明显的柱状树枝晶结构,热处理后粗大柱状树枝晶发生断裂,晶粒开始球化并在晶界处形成均匀分布的块状第二相;在优化的热处理工艺条件下(540 ℃×1 h+150 ℃×16 h),结合溶质元素的固溶强化与第二相的析出强化作用,增材试样的屈服强度、抗拉强度、显微硬度的平均值分别由沉积态的90.7 HV、85 MPa、207 MPa提高至热处理后的137.2 HV、245 MPa、321 MPa。  相似文献   

12.
本文首先制备了含有1.5%(质量分数)TiC的2024铝合金粉末,并将其加入AlSi10Mg合金粉末中,形成AlSi10Mg-2024(TiC)混合粉末,然后采用激光选区熔化工艺对混合粉末成形,并对其沉积态和T6热处理态的显微组织及力学性能进行了表征。结果表明:激光选区熔化过程中2024铝合金中的TiC颗粒可作为异质形核点,促进Al形核,进而抑制粗大柱状晶的形成,显著细化铝合金的显微组织,并弱化了〈100〉//BD(Build direction,生长方向)丝织构的形成。经过T6热处理(520℃固溶2 h,190℃时效10 h)后,AlSi10Mg-2024(TiC)合金仍保持较高的力学性能,抗拉强度达到400 MPa。而经T6热处理后AlSi10Mg合金的强度仅为260 MPa。这是因为添加2024合金可以引入Cu元素,在时效过程中析出第二相粒子,强化铝合金基体。另外,时效过程中析出的纳米Si颗粒也可对T6热处理后的AlSi10Mg-2024(TiC)合金起到一定强化作用。  相似文献   

13.
采用扫描电镜、透射电镜、显微硬度仪和拉伸试验等研究了预拉伸以及蠕变时效处理对Al-Cu-Li-Sc合金的微观组织演变以及力学性能的影响.结果 表明:时效前进行预拉伸处理能够促进合金中的T1相和θ'相的析出,抑制δ '和σ(Al5 Cu6 Mg2)相的析出,并能够减少晶界析出相数量和抑制无沉淀析出带(PFZ)的形成,从而提高合金强度.预拉伸处理后再进行蠕变时效处理能够进一步调控合金的时效析出行为,提升合金力学性能;合金的屈服强度、抗拉强度以及伸长率分别可达550 MPa、583 MPa以及14.1%.  相似文献   

14.
研究热处理工艺对2A97Al-Li合金拉伸性能的影响。结果表明:从传统T8工艺改进的、具有预时效和中间变形的热处理工艺可以有效地改进Al-Li合金的拉伸性能。合金经该热处理工艺处理后,在峰时效条件下,基体中析出大量的T1相,同时,晶界无第二相析出,并且晶界上无沉淀析出带不明显。峰时效合金的抗拉强度、屈服强度和伸长率分别为597MPa、549MPa和7.4%。此外,建立BP人工神经网络模型对经不同热处理工艺处理的合金的拉伸性能进行预测,所得预测结果与实验结果吻合较好,表明该人工神经网络模型可用于预测2A97Al-Li合金的拉伸性能。  相似文献   

15.
采用单辊搅拌冷却技术(Shearing-cooling-rolling,简称SCR技术)和在线固溶处理方法制备Al-3Mg-0.5Sc合金线材,研究不同热处理工艺对合金线材的微观组织和力学性能的影响。结果表明:SCR技术对合金线材产生强烈的单辊剪切塑性变形,在铝基体中产生大量的位错及初生Al3Sc强化相粒子,初生Al3Sc强化相粒子与热处理过程中沉淀析出的大量更为细小的次生Al3Sc强化相粒子共同与位错交互作用。当合金线材采用T6(SCR成形、在线固溶并人工时效)热处理制度时,320℃时效2h后合金线材的抗拉强度为353MPa;当采用T8(SCR成形、在线固溶、冷拔加工并人工时效)热处理制度时,合金材料的抗拉强度为378MPa;当采用T9(SCR成形、在线固溶、人工时效并冷拔加工)热处理制度时,合金线材的抗拉强度为435MPa。  相似文献   

16.
热处理对AZ61A镁合金显微组织及力学性能的影响   总被引:3,自引:1,他引:2  
采用光学显微镜(OM)、场发射扫描电镜(FESEM)、X射线衍射(XRD)及拉伸试验等研究了热处理对铸态AZ61A镁合金显微组织及力学性能的影响.结果表明,分布在铸态AZ61A镁合金晶界的粗大网状β-Mg17Al12相在T4热处理过程中几乎全部溶解,使合金的硬度和屈服强度下降,而抗拉强度和伸长率升高;T6热处理后,合金组织中出现不连续析出与连续析出的β-Mg17Al12相,使得合金的抗拉强度、屈服强度略有提高,硬度有明显提高,而伸长率明显降低;不同的热处理使合金的断口形貌发生明显变化.  相似文献   

17.
采用硬度测试、室温力学性能测试、组织观测,研究了自然时效前的预拉伸(预拉伸率1%、1.5%,2%、2.5%、3%)对2024铝合金时效过程和拉伸性能影响。结果表明,预拉伸处理延缓了合金的自然时效过程,但提高了合金的硬度和强度。当预拉伸率为2%时,合金的最高强度和伸长率分别为456 N/mm2,20.6%,这是由于冷变形量不同、回复所引起的软化、GPB区和S″相强化综合作用所导致的。自然时效时,析出物为GPB区、T相(Al20Cu2Mn3)及S″相(Al2CuMg),其中GPB区、S″(Al2CuMg)相为主要强化相,T相(Al20Cu2Mn3)有细化晶粒的作用,比未预拉伸处理合金的析出相数量多,且析出相分布更均匀,使合金厚板的强度提高。  相似文献   

18.
采用金相显微镜、XRD物相分析、透射电镜观察和力学性能测试,研究了真空感应熔炼水冷铜模铸造下Al-8.2Zn-2.05Mg(10Zn-2.5Mg,12Zn-3Mg)-2.2Cu-0.1Mn-0.25Zr合金析出相的强化效应,以及第1种合金在形变热处理工艺下引入的亚晶强化效应.结果表明,3种合金在T6(120℃时效24 h)状态下均析出了均匀弥散的强化相η’,此时析出相强化起主导作用.随着Zn、Mg含量的提高,析出强化相的数量逐渐增多,析出相强化效应增大,3种合金的抗拉强度分别为646.2、697.4和732.5MPa,伸长率分别为13.0%、10.6%和7.1%,抗拉强度与其析出相强化效应对应;采用120℃预时效12 h+120℃温变形30%+120℃终时效10 h的形变热处理工艺可使Al-8.2Zn-2.05Mg-2.2Cu-0.1Mn-0.25Zr合金获得亚晶组织,此时合金为亚晶强化与析出相强化共同作用的强化机制,合金的抗拉强度达到752.3MPa,伸长率为6.7%;亚晶内析出均匀弥散强化相提高合金性能,比单一增加析出相数量效果更好.  相似文献   

19.
用挤压轧制方法制备了厚度为1 mm的Mg-2Zn-0.5Nd-0.5Zr合金板材,并对板材进行后续退火和时效热处理,利用光学显微镜、扫描电镜、拉伸、电化学以及浸泡试验等研究了不同轧制温度和热处理对板材力学性能和耐蚀性能的影响.结果 表明:轧制温度从280℃升高到330℃,合金中的Nd元素析出量减少,第二相形貌改变,板材塑性和耐蚀性提高,伸长率由9.1%提高到15.2%,腐蚀速率由0.48 mm/y降低到0.28 mm/y.退火后板材伸长率和耐蚀性均进一步提高,其中330℃+T2处理的合金板材的综合性能最好,其抗拉强度和屈服强度分别为235 MPa和158 MPa,伸长率为24.3%,腐蚀速率为0.12 mm/y.时效处理后,合金的晶界处有大量的析出相析出,第二相强化效果显著,330℃+T6组的抗拉强度和屈服强度最高,分别为275.8 MPa和255.5 MPa,但板材伸长率仅为7.6%,腐蚀速率升高到0.43 mm/y.  相似文献   

20.
分别采用铁模浇注、水冷模浇注和半连续铸造3种方式,通过拉伸试验、金相观察、扫描电镜观察、X射线衍射及透射电镜对Al-4.5Mg-0.7Mn-0.4Er合金的力学性能、组织进行了研究,结果发现增大冷却速度可以提高Al-4.5Mg-0.7Mn-0.4Er合金的强度;有利于合金凝固时Er、Mn在Al中形成过饱和固溶体,并且在均匀化退火以后析出形成细小、弥散分布的Al3Er和Al6Mn相。以细小弥散的第二相形式析出的Al3Er是铝合金中的有效强化相,对提高合金的性能、改善合金的组织有益。经过激冷浇注成形,合金的抗拉强度和屈服强度分别提高了14MPa和7MPa,伸长率稍有下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号