共查询到20条相似文献,搜索用时 15 毫秒
1.
针对通用目标检测领域在自动提取特征的过程中会提取错误的目标检测区域信息,本文以YOLOv7模型作为基线模型进行改进,有效地提高检测精度。首先,在YOLOv7模型的主干网络中引入改进的注意力机制,在上采样模块中采用双三次插值,以增强浅层和深层的特征融合效果,减少区域信息丢失;其次,通过设计动态IOU阈值实现动态非极大值抑制,解决固定阈值导致检测边界框冗余的问题,提升准确性;最后,采用剪枝算法对网络模型进行轻量化处理,并使用深度可分离卷积替换原始卷积。实验结果显示,本文模型在数据集上的准确率、F1值和召回率均高于其他模型,说明本文建立的基于YOLOv7模型改进的通用目标检测算法的有效性。 相似文献
2.
3.
针对无人机图像中由于目标微小且相互遮挡、特征信息少导致检测精度低的问题,提出一种基于改进YOLOv7的无人机图像目标检测算法。在颈部和检测头中加入了坐标卷积,能更好地感受特征图中目标的位置信息;增加P2检测层,减少小目标特征丢失、提高小目标检测能力;提出多信息流融合注意力机制——Spatial and Channel Attention Mechanism(SCA),动态调整注意力对空间信息流和语义信息流的关注,获得更丰富的特征信息以提高捕获目标的能力;更换损失函数为SIoU,加快模型收敛速度。在公开数据集VisDrone2019上进行对比实验,改进后算法的mAP50值相比YOLOv7提高了4%,达到了52.4%,FPS为37,消融实验验证了每个模块均提升了检测精度。实验表明,改进后的算法能较好地检测无人机图像中的目标。 相似文献
4.
水下图像目标检测与陆地环境目标检测相比,水下场景表现出更大的复杂性。这会导致捕获图像中的背景颜色发生明显变化,从而影响基于深度学习的通用目标检测模型的检测精度。为了应对这一挑战并提高水下图像目标检测的精度,设计一种CBAM-CRMS注意力机制模块,将该模块嵌入YOLOv7检测模型,通过实验验证了改进算法的优越性能。 相似文献
5.
针对海面目标检测模型难以应用在存储能力和计算能力较小的移动端的问题,提出一种基于改进YOLOv5的海面目标检测算法。采用轻量级提取网络ShuffleNetv2 Block作为YOLOv5网络的骨干部分,减少模型计算量和参数量;使用加权双向特征金字塔网络模块替换原特征融合网络模块,提高网络对不同尺度的特征提取能力;引入坐标注意力机制,提高模型检测精度。在海面目标数据集上进行实验,结果表明:与YOLOv5模型相比,改进模型的精确率、召回率、平均精度分别提高了1.2%、1.4%、0.9%,计算量和参数量分别降低了55.8%,54.9%。改进后的YOLOv5模型不仅提高了检测精度和模型性能,还压缩了模型的计算量和参数量,有利于部署在移动设备端。 相似文献
6.
葛焰;刘心中;马树森;赵津;李镇宏 《现代电子技术》2024,(11):31-37
针对公路路面病害图像存在光影变化大、背景干扰多、尺度差异大等问题,提出基于改进YOLOv7的路面病害检测算法。首先,对YOLOv7网络模型中的ELAN模块进行了优化,通过通道和空间注意力机制优化信息提取,增强网络对重要特征的提取能力;接着,使用ACmix注意力模块提高网络对小目标的关注度,有效解决原网络模型对小目标的漏检问题;其次,采用大下采样比率的卷积输出,提高对小目标的检测精度;最后,引入WIoUv3替换原网络模型中的CIoU来优化损失函数,构造梯度增益的计算方法来附加聚焦机制。实验结果表明:改进后的YOLOv7模型平均精度均值(mAP)与原模型相比提升了4.5%,检测效果优于原网络模型与传统经典目标检测网络模型。 相似文献
7.
文章针对小目标检测存在的可利用特征少、定位精度要求高、数据集小目标占比少、样本不均衡和小目标对象聚集等问题,提出将coordinateattention注意力嵌入YOLOv5模型。Coordinateattention注意力机制通过获取位置感知和方向感知的信息,能使YOLOv5模型更准确地识别和定位感兴趣的目标。YOLOv5改进模型采用木虱和VisDrone2019数据集开展实验验证,实验结果表明嵌入coordinate attention能有效提高YOLOv5的算法性能。 相似文献
8.
随着现代化战争的技术升级,机载红外探测领域对更快更远更准地发现目标的需求日益强烈。为满足机载环境下对红外弱小目标高精度高帧率的检测,本文提出了一种基于YOLOv7改进的目标检测算法,以YOLOv7目标检测算法为基础,进行了修改网络结构和加深卷积层数来使特征提取更多的小目标信息特征;并对骨干网络获取的特征层引入注意力机制来提高神经网络对小目标的感知能力以及提高小目标所在区域的权重占比;使用EIOU损失函数替换原本的CIOU损失函数,提高了收敛速度和定位精度。实验结果表明,相较于原算法YOLOv7,在极小损失帧率的情况下,改进后的算法mAP可以达到98.49%,相较原始算法提升了1.24%,有助于提升对机载红外弱小目标的检测准确率。 相似文献
9.
使用搭载YOLOv5算法的无人机对物体进行目标检测时,由于其权重文件占有较大内存而要求无人机有较高的硬件配置,这在很大程度上约束了无人机进行目标检测的发展。为了解决这一问题,提出了一种改进的YOLOv5算法。使用深度可分离卷积代替普通卷积层,以使YOLOv5s轻量化。由于无人机从空中俯瞰物体,拍摄的图片具有较大的视野,因此将Dropblock与注意力机制添加至YOLOv5s主卷积层的底层来增加YOLOv5s的泛化能力与识别能力,进而提高YOLOv5s的小目标检测能力。使用所提方法对车辆数据集进行训练,获得了83%的训练准确率,并通过对比试验证明了所提方法比原始YOLOv5s具有更强的小目标检测能力。 相似文献
10.
针对目标检测领域对高检测精度和高检测速度共存的需求,提出了一种单阶段目标检测算法即性能平衡的YOLO算法(B-YOLO),该算法首先引入空间注意力机制,利用多尺度最大池化层增大感受野范围;然后采用跨阶段局部连接结构和直通层优化主干网络结构,改善计算效率;最后在多尺度检测结构中增加自下而上的路径,并使用拼接操作进行横向连... 相似文献
11.
针对YOLOv4目标检测算法在一些应用场景的参数多、网络复杂、精度低等问题,提出一种改进的轻量级的目标检测算法GD-YOLO.首先,通过使用轻量级网络GhostNet替换掉YOLOv4的主干特征提取网络CSPDarknet,GhostNet网络极大降低了算法的参数量及计算量,使得算法更加轻量化;其次,提出双重注意力机制(DATM),其不仅增强模型对空间和通道上的特征进行加强,而且其结构参数量小,使用在对主干网络提取出来的三个有效特征层添加双重注意力机制,让模型对特征提取更加有效;最后,新增ACON激活函数代替原有的GhostNet网络中的ReLU激活函数,进一步提高算法检测精度.在VOC2007+2012数据集上的实验结果表明,GD-YOLO算法的平均准确率(mAP)达到84.28%,与YOLOv4算法相比提升了4个百分点,与YOLOv5算法相比低了大约1个百分点;从模型参数量方面,与YOLOv4算法相比减少了11 M,与YOLOv5相比减少3 M.所提GD-YOLO算法相对于YOLOv4不仅减少了模型参数量,而且也保存了较高的平均准确率,表明该算法是更具有轻量化及高准确率的. 相似文献
12.
曹静雯;孟娟;朱珈缘;马媛媛 《现代电子技术》2024,(11):78-83
针对传统鱼群检测方法耗时长且检测结果易受检测人员技术经验影响等问题,结合养殖鱼群图像特征,基于YOLOv7模型,提出一种轻量级实时检测鱼群的方法。该方法将GhostNet引入YOLOv7模型中作为主干特征提取网络,以减少网络的参数量,同时将特征融合网络的ELAN-H模块中CBS卷积层替换为PConv,进一步降低模型的计算复杂度,并在特征融合网络中加入CBAM注意力模块和轻量级上采样算子CARAFE,以提高网络的特征表达能力。在采集的鱼群数据集上进行实验表明,提出模型的平均精度均值为95.54%,参数量为24.13×106,浮点运算次数(GFLOPs)为38.45×109,相较于YOLOv7模型,改进后的模型平均精度均值提高了1.86%,参数量和计算量分别降低了13.14%、70%。相较于YOLOv4和YOLOv5s等模型,文中模型的平均精度均值也均有提高,能够为鱼群检测提供一种轻量化的实时高效检测方法,大大降低了检测人员的工作量。 相似文献
13.
针对遥感图像在复杂背景下因特征提取和表达能力不足而存在漏检和检测效果不佳的问题,提出一种优化特征提取网络的YOLOv4算法模型。该改进模型引入了一种新的Dense-PANet结构以获取更高的分辨率特征,并通过在特征提取网络中嵌入注意力机制以适应遥感图像因视野范围大而导致复杂背景下小目标漏检和检测效果不佳的问题。为了证明本文所提方法的有效性,针对DIOR遥感数据源进行了对比实验,结果表明,本文算法平均准确率(mean average precision,mAP)为86.55%,相比原算法提高了2.52%,较YOLOv3、RetinaNet提高了6.58%、14.09%,验证了所改进算法的有效性。 相似文献
14.
15.
针对目标检测算法YOLOv3检测精度低、目标识别效果差等问题,从特征提取和特征融合的角度提出一种改进的YOLOv3目标检测算法。采取连续残差结构和深度卷积双路特征提取来扩展感受野,在深度卷积模块中以改进的混合池化来替换最大池化;在特征融合方面,引入CBAM,并在增强残差模块中增加了注意力特征融合模块。实验结果表明,改良后的YOLOv3算法在百度与北京林业大学合作的Insects昆虫数据集上的检测精度达到了71.22%,比原始算法的检测精度提升4.88个百分点,验证了该算法的有效性。 相似文献
16.
针对目标检测任务中小目标尺寸较小、背景复杂、特征提取能力不足、漏检和误检严重等问题,提出了一种基于YOLOv8s改进的小目标检测算法——Improved-v8s。Improved-v8s算法重新设计了特征提取和特征融合网络,优化检测层架构,增强浅层信息和深层信息的融合,提高了小目标的感知和捕获能力;在特征提取网络中使用部分卷积(Partial Convolution, PConv)和高效多尺度注意力(Efficient Multi-scale Attention, EMA)机制构建全新的F_C2f_EMA,在降低网络参数量和计算量的同时,通过通道重塑和维度分组最大化保留小目标的特征信息;为了更好地匹配小目标的尺度,优化调整SPPCSPC池化核的尺寸,同时引入无参注意力机制(Simple-parameter-free Attention Module, SimAM),加强复杂背景下小目标特征提取;在Neck部分使用轻量级上采样模块——CARAFE,通过特征重组和特征扩张保留更多的细节信息;引入了全局注意力机制(Global Attention Mechanism, ... 相似文献
17.
针对合成孔径雷达(SAR)图像在舰船检测过程中因其环境复杂、舰船尺寸多样而导致检测精度低的问题,提出了一种轻量级的Cross Stage Ghostnetv2(CSG)模块替换YOLOv7 网络中的ELAN模块和ELAN-W模块,减少网络的参数数量和计算成本;在颈部网络中引入ConvNeXt模块,加强图片的特征提取能力以提高小目标的检测能力;最后采用K-means++聚类自动生成锚框,提高算法的识别精度.在SSDD数据集(SAR Ship Detection Dataset)上的实验结果显示,该算法的平均精度均值mAP@0.5 较YOLOv7 提升4%,模型参数Params下降10.9%,计算量GFLOPs减少63.7%,在提高精确度的情况下大幅度降低了模型复杂度.实验结果证明了该算法在舰船目标检测上的有效性. 相似文献
18.
针对自动驾驶车辆真实行驶场景下因环境复杂,车辆间目标遮挡、环境背景遮挡等导致的车辆检测误检、漏检和定位不准的问题,本文提出了一个改进YOLOv4模型的车辆检测算法。该算法在YOLOv4网络的Backbone与Neck的通道处以及Neck的上采样与下采样处分别添加7处CBAM注意力机制,以提升网络提取有效特征的能力。并利用k-means聚类算法生成适合数据集的锚框。为检验模型的有效性,对数据集进行重新整理与划分,将与车辆无关的种类删去,将Car、Bus、Truck三类合并为Vehicle一类,随后进行实验,并与当前主流的其他目标检测模型进行对比。实验证明,改进的YOLOv4算法比原算法AP提升了4.8%,准确率提升了4.54%,召回率提高了0.9%,优于大部分主流算法。提出的模型为复杂环境下自动驾驶领域的车辆识别提供了有效方法。 相似文献
19.
曲宸阳;程艳云 《微电子学与计算机》2024,(7):8-17
随着智能驾驶系统飞速发展,交通标志检测技术受到广泛关注。针对交通标志在图像中像素面积小、分辨率低、背景复杂等问题,提出了一种基于改进YOLOv7的交通标志检测算法。首先,构建增强特征提取模块。采用残差瓶颈结构和全维度动态卷积层优化特征提取网络中可拓展高效层聚合网络结构,不仅提高了特征提取网络聚焦小目标交通标志关键特征的能力,而且还避免了特征丢失。其次,在特征融合网络中嵌入轻量型混合注意力模块,过滤小目标交通标志周围复杂背景噪声,使网络的颈部更好地融合浅层细节信息和深层语义信息,增强多尺度特征融合效果。最后,解耦网络检测头使用两条享有不同参数的独立分支分别完成小目标交通标志分类和回归任务,提高分类回归准确度。在TT100K交通标志检测数据集上进行了实验评估,结果表明:相较于基线YOLOv7算法,改进算法的小目标精度提高了1.9%、小目标召回率提高了3.1%、mAP值提高了2.6%;同时,改进算法检测速度为57.1帧/s,满足实时检测的要求。 相似文献
20.
针对目前遥感图像目标检测算法中存在的误检、漏检和检测精度低等问题,提出了一种改进YOLOv8的遥感图像检测算法。在主干网络中引入注意力机制EMA到C2f模块,以提高模型对多尺度目标的特征提取能力;在颈部网络中提出Slim-PAN结构,以减少模型计算量;使用WIOU损失函数代替CIOU损失函数,以提升模型的检测精度。通过在DIOR和RSOD遥感数据集上的实验结果表明,改进后的算法与原YOLOv8算法相比,mAP分别提升了1.5%和2.3%,计算量降低了0.3 GFLOPs,改进算法在不增加计算量的同时能提高检测精度,证明了改进算法的有效性和先进性。 相似文献