首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
采用等离子喷涂工艺在K38高温合金基体上分别制备了Y2O3稳定的ZrO2(YSZ)和MgO稳定的ZrO2热障涂层(MSZ),利用热重分析、X-射线衍射和带能谱的扫描电镜等手段,研究分析了两种涂层在900℃和1000℃的高温氧化性能.结果表明:YSZ涂层和MSZ涂层在900℃都有较好的抗高温氧化性能:MSZ涂层在1000℃氧化时发生了相变,引起陶瓷外层开裂,影响了涂层的抗氧化性能和使用寿命,而YSZ涂层在1000℃氧化没有相变发生,表现出比MSZ涂层更佳的抗氧化性能.  相似文献   

2.
爆炸喷涂制备NiCrAlY/NiAl/ZrO2-Y2O3体系热障涂层   总被引:3,自引:0,他引:3  
为了提高热障涂层的高温抗氧化性,采用爆炸喷涂技术在M22合金上制备了Ni-25Cr-5Al—0.5Y/Ni-50Al/ZrO2—8Y2O3(质量分数,%)体系的热障涂层.喷涂态Ni-50Al(NiAl)扩散阻挡层由δ-Ni2Al3,3-NiAl和NiAl3组成.对该涂层进行1050,1100和1150℃下的等温氧化,研究了NiAl层对氧化膜生长机制的影响.结果表明,NiCrAlY/NiAl/YSZ体系的氧化增重明显小于双层结构热障涂层的,其氧化动力学在1050和1100℃下符合四次方规律,在1150℃下符合抛物线规律,NiAl层有阻碍粘结层元素向外扩散、促进以Al2O3为主的氧化膜形成的作用.  相似文献   

3.
本文对比研究了YAG/8YSZ双陶瓷和8YSZ单陶瓷热障涂层体系的抗高温氧化性能。采用爆炸喷涂(D-GUN)在310S耐热不锈钢基体上制备粘结层(NiCoCrAlY),用大气等离子喷涂(APS)分别在粘结层试样上制备YAG/8YSZ双陶瓷和8YSZ单陶瓷热障涂层,利用SEM和XRD分析涂层氧化前后截面与表面特征,对比研究2种热障涂层体系在1100 ℃等温氧化不同时间后的氧化增重动力学、YAG陶瓷层微观结构与物相及TGO生长过程和生长动力学。结果表明,YAG陶瓷层在1100 ℃等温氧化200 h后无明显相结构转变,孔隙率稍有降低;YAG/8YSZ双陶瓷层体系较8YSZ单陶瓷层体系氧化增重速率降低1.7倍,TGO生长速率降低1.4倍,粘结层β-NiAl相消耗速度及岛状氧化物生长速度更低,表现出更好的抗高温氧化性能。  相似文献   

4.
等离子喷涂YSZ热障涂层的热腐蚀行为研究   总被引:2,自引:1,他引:1  
任鑫 《表面技术》2009,38(6):27-28,59
为了研究YSZ热障涂层在热腐蚀环境下的服役情况,采用等离子喷涂工艺在K38高温合金基体上分别制备了Y2O3稳定的ZrO3(YSZ)热障涂层和MgO稳定的ZrO2热障涂层(MSZ),利用热重分析、X-射线衍射和带能谱的扫描电镜等手段,研究分析了这2种涂层在850℃含氯硫酸盐膜下的热腐蚀行为。结果表明:MSZ涂层在850℃热腐蚀时发生了相变,引起陶瓷外层开裂和剥落,影响了涂层的抗高温性能和使用寿命;而YSZ涂层在850℃腐蚀后没有相变发生,表现出了比MSZ涂层更佳的抗热腐蚀性能。  相似文献   

5.
粘结层预处理对PS-PVD沉积7YSZ热障涂层氧化行为的影响   总被引:1,自引:1,他引:0  
目的提高PS-PVD沉积7YSZ热障涂层的抗高温氧化性能。方法采用等离子喷涂-物理气相沉积(PS-PVD)分别在未预处理和预处理(抛光+预氧化)的粘结层表面制备了柱状结构7YSZ热障涂层,并在大气环境下测试了柱状结构7YSZ热障涂层的950℃静态高温氧化性能。利用扫描电子显微镜、X射线衍射仪、能谱仪对高温氧化过程中的陶瓷层/粘结层界面形貌、TGO层结构演变进行表征。结果粘结层的抛光处理能够降低表面几何受力不均匀部位,抑制陶瓷层/TGO/粘结层界面处微裂纹的产生,同时粘结层的预氧化处理形成的薄而连续的TGO层能有效降低TGO的生长速度,抑制陶瓷层-粘结层之间的元素互扩散。柱状结构7YSZ涂层的高温氧化动力学曲线符合Wagner抛物线规律,粘结层未预处理和预处理的7YSZ热障涂层的氧化速率常数分别为0.101×10~(-12) cm~2/s和0.115×10~(-13) cm~2/s。结论粘结层预处理能有效改善等离子物理气相沉积7YSZ热障涂层的抗氧化性能。  相似文献   

6.
李文生  王裕熙 《表面技术》2019,48(8):263-271
目的 提高热障涂层粘结层的抗高温氧化性能。方法 分别采用爆炸喷涂和等离子喷涂工艺制备了不同结构的NiCoCrAlY粘结层,之后通过等离子喷涂制备8YSZ陶瓷层,分析了两种粘结层结构的热障涂层的抗高温氧化性能。利用XRD、SEM和EDS对涂层物相、微观结构和成分进行分析,并对其与基体结合状态、抗高温氧化性能进行研究。结果 爆炸喷涂粘结层内部组织致密,缺陷较少,与基体结合处孔隙少;而等离子喷涂粘结层内部的层状特征明显,孔隙较多,表面粗糙度较低。爆炸喷涂粘结层氧化5 h后,表面生成了一层富Al2O3的致密氧化物膜;而等离子喷涂粘结层表面形成了富NiO、CoO、Cr2O3和Ni(Cr,Al)2O4的氧化物层,并出现了许多微裂纹和片层状氧化物。爆炸喷涂制备的热障涂层试样在前5 h氧化增重速率高于等离子喷涂试样,随后变平缓,而等离子喷涂试样氧化速率依然较高。爆炸喷涂热障涂层的热生长氧化物层(Thermally grown oxide, TGO)经50 h氧化后,仍呈连续状,厚度均匀,粘结层内氧化物缺陷较少。结论 爆炸喷涂粘结层组织均匀、致密,喷涂时涂层的氧化以及热处理的内氧化较少,使得足够的Al较快速地在粘结层表面形成致密的氧化铝,表面一定厚度的氧化铝层抑制了氧和其他金属原子的相向扩散反应,提高了涂层的抗高温氧化性能。  相似文献   

7.
目的提高金属/陶瓷隔热涂层体系在海洋环境下的耐腐蚀性能。方法利用冷喷涂方法制备NiAl复合打底层和Ni CoCrAlY粘结层,与等离子喷涂制备的8YSZ陶瓷层构成适用于海洋环境的多层结构耐蚀隔热涂层体系。利用FE-SEM分别观察喷涂态粘结层和陶瓷层的表面、横截面形貌,通过EDS分析涂层元素分布;利用XRD分析表征涂层的物相组成;借助万能材料试验机,采用拉伸法测试涂层结合强度;利用热循环试验和焰流冲刷试验测试涂层的耐高温性能。结果微观分析表明,冷喷涂制备的NiAl复合打底层和Ni CoCrAlY粘结层形貌致密,涂层材料未发生明显氧化,颗粒变形程度不一,粘结层与基体间的结合强度约为18.4 MPa,粘结层与8YSZ陶瓷层界面结合紧密。陶瓷层物相结构和成分稳定,涂层经12次热震循环和1000个周期的高温焰流冲击后,表面未出现开裂、起皮和脱落。结论采用冷喷涂法和等离子喷涂法联合制备的耐蚀隔热复合涂层体系具备良好的耐热性和耐腐蚀性。冷喷涂制备的金属涂层结构致密,孔隙率低,与陶瓷层结合良好,能够有效提高涂层体系在腐蚀性环境中的耐蚀性能。NiAl复合涂层可以缓解Ni CoCrAlY粘结层和铝合金基材间的热匹配问题,增强涂层的结合性能。  相似文献   

8.
利用EB-PVD技术在Ti Al合金表面制备了扩散铝/YSZ热障涂层。采用SEM、EDS和XRD分析了涂层原始及高温氧化后的微观组织及相组成,并测试了高温氧化性能。结果表明:涂层表面YSZ层为致密柱状晶结构,由非平衡四方相t′-ZrO_2组成。Ti Al合金沉积了扩散铝/YSZ热障涂层后高温氧化性能显著提高,氧化动力学曲线呈对数变化规律,900℃高温氧化时,氧化速率为2.2×10~(-5) mg/cm~2·h。1000℃高温氧化时,氧化速率为1.14×10~(-3) mg/cm~2·h。在高温氧化过程中,粘结层与基体之间发生元素扩散,膜基界面消失。在面层与中间粘结层之间形成了均匀连续的热生长氧化物层TGO。  相似文献   

9.
采用电热爆炸喷涂和等离子喷涂联合制备热障涂层,以电热爆炸喷涂法在DZ125合金表面制备NiCoCrAlY粘结层,以等离子喷涂技术制备陶瓷顶层。利用扫描电镜(SEM)和X射线衍射(XRD)仪对所制备的粘结层进行分析,结果表明:电热爆炸喷涂的粘结层与基体结合良好,喷涂态的粘结层的相主要由Ni3Al组成。采用联合法制备的热障涂层,在喷涂态的陶瓷层、粘结层、基体3者结合良好,界面清晰。在高温热循环过程中,粘结层/陶瓷层界面间生成了连续、致密的Al2O3膜,阻碍粘结层的氧化。粘结层/TGO界面产生平行于界面的裂纹,是导致热障涂层失效的主要原因。  相似文献   

10.
爆炸喷涂空心球形氧化锆热障涂层的抗热冲击性能   总被引:8,自引:0,他引:8  
柯培玲  武颖娜  王启民  宫骏  孙超  闻立时 《金属学报》2004,40(11):1179-1182
在镍基高温合金基体DSM11上制备双层结构的热障涂层.粘结底层采用电弧离子镀技术制备的NiCoCrAlY涂层,陶瓷顶层采用爆炸喷涂技术制备的Y2O3部分稳定的ZrO2(YSZ)陶瓷涂层,粉末采用普通实心YSZ粉、空心球形YSZ粉对制备的热障涂层进行热导率测定和热冲击性能实验.结果表明:爆炸喷涂制备的空心YSZ陶瓷层涂层具有低的热导率和良好的抗热冲击性能。  相似文献   

11.
Thermally sprayed coatings present effective properties strongly different from those of the primary bulk material. In particular, the actual thermal conductivity of Yttria Partially Stabilized Zirconia (YPSZ) coatings is typically twice lower than the thermal conductivity of dense YPSZ. The architecture of the porous network plays a major role on this decrease: thin inter-lamellar cracks act as thermal resistance and contribute to decrease the effective thermal conductivity more efficiently than globular pores.From this situation, an in-house code has been developed since a few years: this code implements a finite difference method to perform calculations directly on micrographs of coating cross-sections obtained by SEM. Each pixel of the intermediate binary picture is interpreted as a cell of integration of the heat conduction equation. A thermal gradient is applied between the top and bottom edges and a system of linear equations is formed and solved, providing the thermal flux flowing through the structure and the corresponding effective thermal conductivity.In the present study, the case of YPSZ coatings before and after thermal treatment was considered. The numerical results are in rather good agreement with experimental data: the thermal treatment tends to close a part of the thinnest pores, thus providing a decrease of the pore level and an increase of the effective thermal conductivity of the produced coatings.  相似文献   

12.
Particular behavior of spindle thermal deformation by thermal bending   总被引:1,自引:0,他引:1  
Thermally induced errors reduce the accuracy in precision machining, and a great deal of research has been presented on compensation for these errors in machine tools. However, during the transition period after commencing or stopping spindle rotation, thermal deformation behavior is very complex. In particular, the y-directional movement of the vertical machining center cannot be explained by thermal expansion alone because of the relationship between deformation and temperature. Thermal bending that is generated from the thermal gradient in the structure causes this movement. In the research described in this paper, a theoretical explanation and an experimental verification is given for the particular behavior of spindle thermal deformation. As it is not easy to map the relationship of the compensation model, separation of the steady from the non-steady state in the mapping process is strongly recommended.  相似文献   

13.
Neodymium-cerium oxide (Nd2Ce2O7) was proposed as a new thermal barrier coating material in this work. Monolithic Nd2Ce2O7 powder was prepared by the solid-state reaction at 1400 °C. The phase composition, thermal stability and thermophysical properties of Nd2Ce2O7 were investigated. Nd2Ce2O7 with fluorite structure was thermally stable in the temperature range of interest for TBC applications. The results indicated that the thermal expansion coefficient (TEC) of Nd2Ce2O7 was higher than that of YSZ (6-8 wt.% Y2O3 + ZrO2) and even more interesting was the TEC change as a function of temperature paralleling that of the superalloy bond coat. Moreover, the thermal conductivity of Nd2Ce2O7 is 30% lower than that of YSZ, which was discussed based on the theory of heat conduction. Thermal barrier coating of Nd2Ce2O7 was produced by atmospheric plasma spraying (APS) using the spray-dried powder. The thermal cycling was performed with a gas burner test facility to examine the thermal stability of the as-prepared coating.  相似文献   

14.
Thermal barrier coatings (TBCs) with nano-multilayer structure were investigated by thermal shock test. The change of insulation effect during thermal shock test was studied by in-situ temperature monitor with a thermal couple set into the substrate. Microstructure and electrical properties of TBCs were characterized by SEM and Impedance Spectroscopy, respectively. Initial increase in insulation effect was observed and related to the formation and growth of perpendicular microcracks in top coat and transversal microcracks in TGO. With thermal shock, the insulation effect decreased due to the further growth of microcracks in top coat and TGO which induced the failure of TBCs.  相似文献   

15.
Thermal barrier coatings (TBCs) are used in applications that involve high temperatures and severe temperature gradients in order to improve product performance. The understanding of the mechanisms resulting in coating delamination allows the development of materials that can prolong component life. The goal of this study was to demonstrate that single layer mullite-YSZ composites resulted in reduced interface fracture under the application of a thermal shock. This was accomplished by comparing the thermal shock behavior of three coating architectures: monolithic YSZ, monolithic mullite and a mullite-YSZ composite. The coating architectures were chosen to optimize material properties to reduce the driving force for coating failure. It was found that under thermal loads that result in similar surface temperatures, the mullite-YSZ composite developed shorter multiple surface cracks along with shorter horizontal cracks compared to the monolithic YSZ. The composite coating was able to combine advantageous material properties from both the constituent ceramics.  相似文献   

16.
In this paper, a numerical simulation of stress development within the air plasma-sprayed thermal barrier coating system incorporating nonlinear behavior under compression for the top coat ceramic layer is presented. The nonlinear behavior as well as its evolution with sintering at high temperature is simulated using a microstructure based model. The simulation results indicate that this nonlinearity has a significant role on distribution of the residual stresses in this layer resulting from the thermal cycling. A parametric study is carried out to investigate the effects of the microstructural features of the top coat ceramic layer on residual stress distribution. It is revealed from the simulation results that the variation of porosity has only a negligible effect on the residual stress distribution. In addition, the stresses accountable for the crack growth can be lowered by changing the microcrack densities of the top coat layer within a specified range.  相似文献   

17.
During the last decade a number of ceramic materials, mostly oxides have been suggested as new thermal barrier coating (TBC) materials. These new compositions have to compete with the state-of-the-art TBC material yttria stabilized zirconia (YSZ) which turns out to be difficult due to its unique properties. On the other hand YSZ has certain shortcomings especially its limited temperature capability above 1200 °C which necessitates its substitution in advanced gas turbines.In the paper an overview is tried on different new materials covering especially doped zirconia, pyrochlores, perovskites, and aluminates. Literature results and also results from our own investigations will be presented and compared to the requirements. Finally, the double-layer concept, a method to overcome the limited toughness of new TBC materials, will be discussed.  相似文献   

18.
Thermal barrier coatings (TBCs) often encounter temperature cycling in the course of normal operation. In the absence of actual or simulated engine test facilities, accelerated furnace thermal cycling experiments are frequently devised to evaluate the response of various TBCs. This study, which deals with yttria-stabilized and magnesia-stabilized zirconia systems, shows that the performance of a TBC is significantly governed by the severity of the time-temperature schedule employed. More importantly, the ranking of the two zirconia-base TBCs also is influenced by the adopted thermal cycling test schedule. These findings have ramifications in the design of suitable accelerated tests for TBC evaluation.  相似文献   

19.
The ability to measure the properties of thermal barrier coatings (TBCs) applied to engine components is challenging due to the complex geometry of parts and the difficulty of preparing samples suitable for conventional techniques. As a result, there is a shortage of information related to the morphology and thermal properties of coatings on engine components. Phase of photothermal emission analysis (PopTea) is a relatively new non-destructive technique that is suitable for measuring the thermal properties of coatings on serviceable engine parts. To demonstrate this capability, measurements are performed on an intact turbine blade coated with air plasma sprayed (APS) 7 wt.% Y2O3-stabilized ZrO2 (7YSZ). The average thermal diffusivity of the coating applied to the blade was ~ 0.5 mm2/s which is typical for thermal diffusivity previously measured on 7YSZ APS coatings made on test coupons with PopTea and laser flash. Furthermore, trends in thermal properties over the blade are studied and compared. It is discovered that variations in thermal properties are the result of differences in coating porosity.  相似文献   

20.
Oxides having magnetoplumbite structure are promising candidate materials for applications as high temperature thermal barrier coatings because of their high thermal stability, high thermal expansion, and low thermal conductivity. In this study, powders of LaMgAl11O19, GdMgAl11O19, SmMgAl11O19, and Gd0.7Yb0.3MgAl11O19 magnetoplumbite oxides were synthesized by citric acid sol-gel method and hot-pressed into disk specimens. The thermal expansion coefficients (CTE) of these oxide materials were measured from room temperature to 1500 °C. The average CTE value was found to be ∼ 9.6 × 10− 6/C. Thermal conductivity of these magnetoplumbite-based oxide materials was also evaluated using steady-state laser heat flux test method. The effects of doping on thermal properties were also examined. Thermal conductivity of the doped Gd0.7Yb0.3MgAl11O19 composition was found to be lower than that of the undoped GdMgAl11O19. In contrast, thermal expansion coefficient was found to be independent of the oxide composition and appears to be controlled by the magnetoplumbite crystal structure. Preliminary results of thermal conductivity testing at 1600 °C for LaMgAl11O19 and LaMnAl11O19 magnetoplumbite oxide coatings plasma-sprayed on NiCrAlY/Rene N5 superalloy substrates are also presented. The plasma-sprayed coatings did not sinter even at temperatures as high as 1600 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号