首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work evaluates the influence of the bulk carbon content (0.1, 0.006, and 0.005 wt pct) and tempering temperature (823, 853, and 913 K) on stability, chemical composition, and size of carbide particles in 540 ks tempered states of 2.6Cr-0.7Mo-0.3V steel. The scanning transmission electron microscopy/energy-dispersive X-ray spectroscopy (STEM/EDXS) and electron diffraction methods were used to analyze the carbide particles. A characteristic energy-dispersive X-ray (EDX) spectrum can be attributed to each of the identified carbides. The MC carbide is stable in all experimental states. The phase stability of Fe-Cr-rich carbides increased in the order ε, Fe3C → M3C → M7C3, with tempering temperature increasing. In steels with higher carbon content tempered at low temperature, M23C6 carbide was also noted. The Mo2C and M6C carbides were not observed. It was shown that the decrease of the bulk carbon content has the same influence on the carbide phases stability as the increase of the bulk vanadium content at the unchanged Cr, Mo, C bulk contents and tempering temperature. Similarly, the decrease of tempering temperature has the same influence on the carbide phases stability as the decrease of the bulk Cr content at the unchanged V, Mo, and C bulk contents.  相似文献   

2.
The microstructure of chromium-tungsten steels   总被引:1,自引:0,他引:1  
Chromium-tungsten steels are being developed to replace the Cr-Mo steels for fusion-reactor applications. Eight experimental steels were produced and examined by optical and electron microscopy. Chromium concentrations of 2.25, 5, 9 and 12 pct were used. Steels with these chromium compositions and with 2 pct W and 0.25 pct V were produced. To determine the effect of tungsten and vanadium, three other 2.25Cr steels were produced as follows: an alloy with 2 pct W and 0 pct V and alloys with 0 and 1 pct W and 0.25 pct V. A 9Cr steel containing 2 pct W, 0.25 pct V, and 0.07 pct Ta also was studied. For all alloys, carbon was maintained at 0.1 pct. Two pct tungsten was required in the 2.25Cr steels to produce 100 pct bainite (no polygonal ferrite). The 5Cr and 9Cr steels were 100 pct martensite, but the 12Cr steel contained about 25 pct delta-ferrite. Precipitate morphology and precipitate types varied, depending on the chromium content. For the 2.25Cr steels, M3C and M7C3 were the primary precipitates; for the 9Cr and 12Cr steels, M23C6 was the primary precipitate. The 5Cr steel contained M7C3 and M23C6. All of the steels with vanadium also contained MC.  相似文献   

3.
J. Ju  D.-M Fu  S.-Z. Wei  P. Sang  Z.-W. Wu 《钢铁冶炼》2018,45(2):176-186
The effects of chromium and vanadium additions on the microstructure, hardness and wear resistance of high-vanadium alloy steel (containing 5–10 wt-% V and 2–10 wt-% Cr) were studied by means of optical microscopy, scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS), Vickers hardness and Rockwell-hardness tester & M-200 ring block wear tester. Researching results showed that the solidification structure of high-vanadium wear-resistant alloy steel was mainly consisted α-Fe (martensite), vanadium carbide (VC), M3C and M7C3. Vanadium is mainly distributed over VC, and certain amount of vanadium exists in the matrix and M7C3 type eutectic carbide. Chromium is mainly distributed over the M7C3, and the matrix also contains a small quantity of chromium. It is found that the content of VC increases with the increase of vanadium content when carbon and chromium contents are constant. The change of micro- and macro-hardness was not obvious with the increase of vanadium content. The content of M7C3 type eutectic carbides increases gradually with the increase of chromium content when carbon and vanadium contents are constant. The micro- and macro-hardness increases with the increase of chromium content. The increase of vanadium content brings to the increase of wear resistance of alloy steel when carbon and chromium contents are constant. The change of chromium content had no obvious effect on wear resistance of high-vanadium alloy steel when carbon and vanadium contents. The increase of vanadium content brings to the increase of wear resistance of alloy steel when carbon and chromium contents are constant. The wear resistance of as-cast high-vanadium alloy steel is the best when the content of vanadium and chromium is 10 wt-% and 5 wt-% respectively.  相似文献   

4.
The role of alloy composition in determining the microstructure and microchemistry of a series of related high speed steels has been investigated by a combination of analytical electron microscopy and atom-probe field ion microscopy. The four steels which were investigated (M2, ASP 23, ASP 30 and ASP 60) cover a large range of C, V and Co contents. Excepting the Co content, the composition of primary MC and M6C carbides and as-hardened martensite was similar in all four alloys and the major effect of increasing the content of C and V was to increase the volume fraction of MC primary carbides. Precipitation of proeutectoid carbides (mainly MC and M2C) occurred during hardening of all four steels and the extent of this was greatest in the highly alloyed ASP 60. Tempering at 560°C resulted in the precipitation of extremely fine dispersions of MC and M2C secondary carbides with very mixed compositions in all four steels. It was found that, as well as hindering the formation of autotempered M3C in the as-hardened martensite, additions of Co refined the secondary carbide dispersion and delayed overaging reactions. Overaging at 600°C resulted in the precipitation of M3C, M6C and M23C6 at the expense of the fine MC and M2C secondary carbide dispersion.  相似文献   

5.
The distributions and precipitated amounts of M23C6 carbides and MX-type carbonitrides with decreasing carbon content from 0.16 to 0.002 mass pct in 9Cr-3W steel, which is used as a heat-resistant steel, has been investigated. The microstructures of the steels are observed to be martensite. Distributions of precipitates differ greatly among the steels depending on carbon concentration. In the steels containing carbon at levels above 0.05 pct, M23C6 carbides precipitate along boundaries and fine MX carbonitrides precipitate mainly in the matrix after tempering. In 0.002 pct C steel, there are no M23C6 carbide precipitates, and instead, fine MX with sizes of 2 to 20 nm precipitate densely along boundaries. In 0.02 pct C steel, a small amount of M23C6 carbides precipitate, but the sizes are quite large and the main precipitates along boundaries are MX, as with 0.002 pct C steel. A combination of the removal of any carbide whose size is much larger than that of MX-type nitrides, and the fine distributions of MX-type nitrides along boundaries, is significantly effective for the stabilization of a variety of boundaries in the martensitic 9Cr steel.  相似文献   

6.
Dimensional changes in austenitic stainless steels exposed to fast neutron fluxes have been attributed mainly to void formation and thermal and irradiation induced creep. In this in-vestigation, immersion bulk density measurements were performed on variously preheated AISI Types 304, 316L and 316 stainless steels. The results show that the density changes accompanying sequential precipitation of the various carbide (M23C8, M6C) and intermetallic phases (sigma, chi, eta) during thermal aging can be comparable to those attributed to void formation at low fast neutron fluences. Vacuum melted Type 316 stainless steel always den-sified with aging at 725°C or 810°C and exhibited higher rates of precipitation and recovery of cold work during aging than the equivalent air melted steel. The direction of the density change in the air melted material was dependent upon the prior thermomechanical treat-ments. This behavior can be rationalized on the basis of a higher impurity content in the air melted material. A mathematical model was constructed which successfully explains the variation of bulk density due to sequential precipitation in Type 18-12 austenitic stain-less steels.  相似文献   

7.
Optical metallography, transmission electron microscopy, and X-ray diffraction from bulk extracted residues were used to investigate the microstructural stability in the temperature range 450°C to 950°C of a titanium-modified type 316 stainless steel and to compare this steel to a type 321 heat. The effect of cold deformation prior to aging was also investigated. Compared to standard type 316 stainless steel, the nucleation of M23C6 was delayed and its growth retarded in the titanium modified alloy due to early formation of TiC and Ti4C2S2 which reduced the carbon content in the matrix. Precipitation of the intermetallic σ and χ phases was faster in the titanium modified alloy. The type 321 material formed both M23C6 and the intermetallic phases less rapidly than either standard or titanium-modified type 316 steels. The relative tendencies toward intermetallic compound formation in various austentic stainless steels are discussed in terms of an “effective equivalent Cr content” remaining in the austenitic matrix after carbide precipitation. Cold work accelerated the precipitation rate of M23C6 and σ, but it suppressed χ formation due to preferential early σ formation. Early sigma formation was often associated with recrystallization of the cold worked matrix. Mechanisms accounting for this behavior are discussed.  相似文献   

8.
The effect of carbon level on the tempering behavior at 700°C of 2.25 pct Cr-1 pct Mo steels having typical weld metal compositions has been investigated using analytical electron microscopy and X-ray diffraction techniques. The morphology, crystallography and chemistry, of each of the various types of carbides observed, has been established. It has been shown that each carbide type can be readily identified in terms of the relative heights of the EPMA spectra peaks for iron, chromium, molybdenum, and silicon. A decrease in the carbon level of the steel increases the rate at which the carbide precipitation reactions proceed, and also influences the final product. Of the carbides detected, M23C6 and M7C3 were found to be chromium-based, and their compositions were independent of both the carbon level of the steel and the tempering time. The molybdenum-based carbides, M2C and M6C, however, showed an increase in their molybdenum contents as the tempering time was increased. The rate of this increase became greater as the carbon content of the steel was lowered.  相似文献   

9.
The formation of secondary carbides during tempering of H11 hot work steels at 898 K (625 °C) was studied by transmission electron microscopy (TEM) and related to the previously established effects of Si content on mechanical properties. Lower Si contents (0.05 and 0.3 pct Si) and higher Si contents (1.0 and 2.0 pct Si) were observed to yield different carbide phases and different particle distributions. Cementite particles stabilized by Cr, Mo, and V in the lower Si steels were found to be responsible for similar precipitation hardening effects in comparison to the M2C alloy carbides in the higher Si steels. The much higher toughness of the lower Si steels was suggested to be due to a finer and more homogeneous distribution of Cr-rich M7C3 carbides in the interlath and interpackage regions of the quenched and tempered martensite microstructure. The present effects of Si content on the formation of alloy carbides in H11 hot work steels were found to be the result of the retarding effect of Si on the initial formation of cementite, well known from the early tempering stages in low alloy steels.  相似文献   

10.
Rod-shaped precipitates up to 6μm} long and 0.25μm wide, observed as a common feature within proeutectoid ferrite grains of ex-service lCr-0.5Mo steels, have been characterized using electron microdiffraction, energy-dispersive X-ray spectroscopy, and electron energy loss spectroscopy. The majority of the rods have been identified as M5C2 carbides, although some were M3C. The M5C2 carbide, also known as the Hägg orX-carbide, is a monoclinic phase that is not known to have been identified previously in creep-resistant Cr-Mo steels. The M5C2 rods appeared to nucleate heterogeneously on M2C carbides and persist in ferrite regions from which the needlelike M2C carbides had disappeared. This suggests that the M5C2 carbide is more stable thermodynamically than M2C in lCr-0.5Mo steels under typical service conditions. The metallic element compositions of the rodlike carbides varied, but the average compositions were in the range 48 to 56 at. pct Fe, 32 to 42 at. pet Cr, 8 to 12 at. pct Mn, and about 1 at. pct Mo. The Mn content of the rods varied systematically with exposure temperature and thus might be applied to the estimation of the effective service temperature of lCr-0.5Mo steel components.  相似文献   

11.
The effects of silicon additions up to 3.5 wt pct on the as-cast carbides, as-quenched carbides, and as-tempered carbides of high-speed steels W3Mo2Cr4V, W6Mo5Cr4V2, and W9Mo3Cr4V were investigated. In order to further understand these effects, a Fe-16Mo-0.9C alloy was also studied. The results show that a critical content of silicon exists for the effects of silicon on the types and amount of eutectic carbides in the high-speed steels, which is about 3, 2, and 1 wt pct for W3Mo2Cr4V, W6Mo5Cr4V2, and W9Mo3Cr4V, respectively. When the silicon content exceeds the critical value, the M2C eutectic carbide almost disappears in the tested high-speed steels. Silicon additions were found to raise the precipitate temperature of primary MC carbide in the melt of high-speed steels that contained d-ferrite, and hence increased the size of primary MC carbide. The precipitate temperature of primary MC carbide in the high-speed steels without d-ferrite, however, was almost not affected by the addition of silicon. It is found that silicon additions increase the amount of undis-solved M6C carbide very obviously. The higher the tungsten content in the high-speed steels, the more apparent is the effect of silicon additions on the undissolved M6C carbides. The amount of MC and M2C temper precipitates is decreased in the W6Mo5Cr4V and W9Mo3Cr4V steels by the addition of silicon, but in the W3Mo2Cr4V steel, it rises to about 2.3 wt pct.  相似文献   

12.
The creep rupture test has been carried out for 18Cr-10Ni-0.1 wt pct C stainless steels bearing individually Ti, Nb(Cb), and V, followed by the microstructural study. The highest value of 700°C-104 h rupture strength in a titanium and niobium series (the steel containing various amounts of titanium and niobium, respectively) has been obtained at Ti/C and Nb/C atomic ratio of 0.8 and 0.2 to 0.4, respectively. On the other hand, in a vanadium series, the creep rupture strength of the steel showed its maximum at V/C atomic ratio of about unity in the testing at the temperature of 700° and 800°C, but at 600°C, the strength increases monotonically with vanadium content up to 1.53 wt pct. Such high strength in the steels con-taining proper amount of Ti, Nb, and V is related mainly with the fine distribution of M23C6 precipitates which is caused by the acceleration of nucleation due to the foregoing precipi-tation of a MC type carbide within the austenite grains. And it has been deduced that the solid solution strengthening effect of the vanadium contributes also to the remarkable in-crease in the rupture strength of the vanadium steel at 600°C.  相似文献   

13.
A directionally solidified cobalt-base alloy, DZ40M, was solidified with a columnar grained austenitic matrix with a 〈001〉 preferential orientation and primary carbides of chromium-rich M7C3 and MC at grain boundaries and interdendritically. Secondary carbides in DZ40M alloy are chromium-rich M23C6 and tungsten-rich M6C. The M23C6 carbide has a cube-cube orientation relationship with the austenitic matrix. Initial precipitation of secondary carbide, M23C6, occurred on dislocations in the austenitic matrix of the as-cast DZ40M alloy during cooling. Aging treatment (100 to 1000 hours at 850°C) produced a profusive precipitation of the M23C6 carbide mainly around the primary carbides. In the interior of grains, M23C6 precipitated preferentially on dislocations and stacking faults. Subsequently, M23C6 grew into laths near the primary carbides and coalesced into chains. The precipitation behavior of M23C6 can be explained by the following reaction: 23M+6C→M23C6. The primary carbides are a carbon reservoir for the precipitation of M23C6. The M6C carbide was found only on the surface of the primary M7C3 carbide adjacent to tungsten-rich MC in the aged condition. The precipitation of the tungsten-rich M6C is atributed to the tungsten segregation, which resulted from decomposition of the tungsten-rich MC and good lattice match between M6C and M7C3. The inhomogeneity of secondary precipitation is due to the uneven distribution of alloying elements.  相似文献   

14.
Carbide transformations of M3C → M7C3 → M23C6 → M6C and crystallographic relationships among these carbides were examined by transmission electron microscopy. Two kinds of high carbon-chromium steels containing tungsten or molybdenum were quenched rapidly from the melts and tempered at temperatures up to 700°C. By tempering at 600°C, M7C3 carbides nucleated mostly on cementite/ferrite interfaces and grew inward the cementite byin- situ transformation.In-situ transformations from M7C3 to M23C6 and from M23C6 to M6C were also found in these alloy steels during tempering at higher temperatures. Mutual relationships of crystal orientations among M3C, M7C3, M23C6 and M6C were decided as follows: {fx739-01}.  相似文献   

15.
The interdiffusion of chromium in M7C3 and M3C carbide cases obtained during diffusion chromizing is discussed. The diffusional characteristics of the two phases are emphasized and are related to the chromium concentration by means of the Matano method using the experimental chromium profiles. The importance of grain boundary diffusion and the influence of the layer morphology on the variation of the interdiffusion coefficient are considered in turn.  相似文献   

16.
The formation of chromium carbide diffusion layers on iron-carbon alloys was studied in this investigation. The investigation was carried out on graphite, plain carbon steels, gray cast iron, and white cast iron. The carbide layers were obtained by the powder pack method. To distinguish the effect of iron from the chromizing medium on the layer morphology, high purity iron and chromium powders were used as the components of the powder mixture. The samples were chromized in the temperature range of 870 to 1373 K for five to 1500 minutes. Phase composition of the layers was examined by X-ray diffraction method. To assess chromium and iron distribution in the layers, an electron micro-probe was employed. Microstructure of the layers was examined with the aid of light and electron microscopes. Both replica and thin foil methods were used in this work. The original method of thin foil preparation was used to show the M7C3 layer substructure and to define its crystallographic orientation. It was found that formation of the carbide layer began at temperatures below A1 transformation, when the samples were heated to a normal chromizing temperature. It was proved that M3C appearance in the layer depends on both chromizing temperature and amount of carbon in the alloy. The Fe : Cr ratio in the chromized medium was found to affect the microstructure and thickness of the layers strongly. The needle-shaped grains of the M7C3 layer showed particular crystallographic orientation,i.e., [0001] M7C3 crystallographic direction was perpendicular to the diffusion front. The new data on microstructure of the carbide layers were obtained by thin foil method. The growth direction of the carbide layer was defined, which allowed the suggestion of the diffusion model for the carbide layer formation.  相似文献   

17.
This paper presents a study of carbide precipitation, grain boundary segregation, and temper embrittlement in NiCrMoV rotor steels. One of the steels was high purity, one was doped with phosphorus, one was doped with tin, and one was commercial purity. In addition, two NiCrV steels, one high purity and one doped with phosphorus, were examined. Carbide precipitation was studied with analytical electron microscopy. It was found that after one hour of tempering at 600 ‡C only M3C carbides were precipitated in the NiCrMoV steels. These were very rich in iron. As the tempering time increased, the chromium content of the M3C carbides increased significantly, but their size did not change. Chromium rich M7C3 precipitates began to form after 20 hours of tempering, and after 50 hours of tempering Mo-rich M2C carbides were precipitated. Also, after 100 hours of tempering, the matrix formed bands rich in M3C or M7C3 and M2C particles. Tempering occurred more rapidly in the NiCrV steels. Grain boundary segregation was studied with Auger electron spectroscopy. It was found that the amount of phosphorus and tin segregation that occurred during a step-cooling heat treatment after tempering was less if a short time tempering treatment had been used. It will be proposed that this result occurs because the low temperature tempering treatments leave more carbon in the matrix. Carbon then compctes with phosphorus and tin for sites at grain boundaries. This compctition appears to affect phosphorus segregation more than tin segregation. In addition to these two impurity elements, molybdenum and nickel segregated during low temperature aging. The presence of molybdenum in the steel did not appear to affect phosphorus segregation. Finally, it will be shown that all of the steels that contain phosphorus and/or tin exhibit some degree of temper embrittlement when they are aged at 520 ‡C or are given a step-cooling heat treatment. Of the NiCrMoV steels, the phosphorus-doped steel showed the least embrittlement and the commercial purity steel the most. The phosphorus-doped NiCrV steel was also more susceptible to temper embrittlement than the phosphorus-doped NiCrMoV steel. This latter difference was attributed to molybdenum improving grain boundary cohesion. It was also found that as the segregation of phosphorus or tin to the grain boundaries increased, the measured embrittlement and the amount of intergranular fracture increased. However, there was a large amount of scatter in all of these data and the trends were only qualitative. All parts of this study are compared in detail to others in the literature, and general trends that can be discerned from all of these results are presented. Formerly with the University of Pennsylvania, Department of Materials Science, Philadelphia, PA  相似文献   

18.
The effect of W on dislocation recovery and precipitation behavior was investigated for martensitic 9Cr-(0,l,2,4)W-0.1C (wt pct) steels after quenching, tempering, and subsequent prolonged aging. The steels were low induced-radioactivation martensitic steels for fusion reactor structures, intended as a possible replacement for conventional (7 to 12)Cr-Mo steels. During tempering after quenching, homogeneous precipitation of fine W2C occurred in martensite, causing secondary hardening between 673 and 823 K. The softening above the secondary hardening temperature shifted to higher temperatures with increasing W concentration, which was correlated with the decrease in self-diffusion rates with increasing W concentration. Carbides M23C6 and M7C3 were precipitated in the 9Cr steel without W after high-temperature tempering at 1023 K. With increasing W concentration, M7C3 was replaced by M23C6, and M6C formed in addition to M23C6. During subsequent aging at temperatures between 823 and 973 K after tempering, the recovery of dislocations, the agglomeration of carbides, and the growth of martensite lath subgrains occurred. Intermetallic Fe2W Laves also precipitated in the δ-ferrite grains of the 9Cr-4W steel. The effect of W on dislocation recovery and precipitation behavior is discussed in detail.  相似文献   

19.
To predict the solidification and product properties of tool steels with complex chemical compositions, an understanding of the transformation behavior is crucial. Therefore, the quaternary Fe–C system with 10 wt% Cr and 3 wt% W (a subsystem of cold work steels, with M7C3 and M23C6 carbides) and the Fe–C system with 6 wt% W and 5 wt% Mo (simplified high-speed steel, with M6C and MC carbides) are selected. The motivation for this study is to develop a methodology for the safe and fast production of model alloys and the close to equilibrium performance of differential scanning calorimetry (DSC) measurements. Regular diffusion annealing of as-cast carbidic steels is time-consuming, but with an additional heat treatment during the DSC measurement in the semisolid zone (30–50% liquid phase fraction), a status close to equilibrium can be achieved within minutes due to the high diffusion. To prove the potential of the equilibration by partial premelting in the DSC, additional equilibration and quenching experiments are performed in a Tammann furnace and investigated using a scanning electron microscope and X-ray diffraction analysis. By combining these methods, carbide types and the transformation temperatures can be verified to evaluate and construct complete phase diagrams.  相似文献   

20.
To support quantitative design of ultra-high-strength (UHS) secondary-hardening steels, the precipitation of cementite prior to the precipitation of the M2C phase is investigated using a model alloy. The microstructure of cementite is investigated by transmission electron microscopy (TEM) techniques. Consistent with earlier studies on tempering of Fe-C martensite, lattice imaging of cementite suggests microsyntactic intergrowth of M5C2 (Hägg carbide). The concentration of substitutional alloying elements in cementite are quantified by high-resolution analytical electron microscopy (AEM) using extraction replica specimens. Quantification of the substitutional elements in cementite confirms its paraequilibrium (PE) state with ferrite at the very early stage of tempering. The implications of these results are discussed in terms of the thermodynamic driving force for nucleation of the primary-strengthening, coherent M2C carbide phase. The ferrite-cementite PE condition reduces the carbon concentration in the ferrite matrix with a significant reduction of M2C driving force. The kinetics of dissolution of PE cementite and its transition to other intermediate states will also influence the kinetics of secondary hardening behavior in UHS steels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号