首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
A potential low temperature co-fired ceramics system based on zinc borate 3ZnO–2B2O3 (3Z2B) glass matrix and Al2O3 filler was investigated with regard to phase development and microwave dielectric properties as functions of the glass content and sintering temperature. The densification mechanism for 3Z2B–Al2O3 composites was reported. The linear shrinkage of 3Z2B glass–Al2O3 composites exhibited a typical one-stage densification behavior. XRD patterns showed that a new crystalline phase, ZnAl2O4 spinel, formed during densification, indicating that certain chemical reaction took place between the 3Z2B glass matrix and the alumina filler. Meanwhile, several zinc borate phases, including 4ZnO·3B2O3, crystallized from the glass matrix. Both of the reaction product phase and crystallization phases played an important role in improving the microwave dielectric properties of composites. The optimal composition sintered at 850–950 °C showed excellent microwave dielectric properties: ?r = ∼5.0, Q·f0 = ∼8000 GHz, and τf = ∼−32 ppm/°C at ∼7.0 GHz.  相似文献   

2.
Bi2O3 was selected as liquid phase sintering aid to lower the sintering temperature of La(Mg0.5Ti0.5)O3 ceramics. The sintering temperature of La(Mg0.5Ti0.5)O3 ceramics is generally high, about 1600 °C. However, the sintering temperature was significantly lowered about 275 °C from 1600 °C to 1325 °C by incorporating in 15 mol% Bi2O3 and revealed the optimum microwave dielectric properties of dielectric constant (?r) value of 40.1, a quality factor (Q × f) value of 60,231 GHz, and the temperature coefficient (τf) value of 70.1 ppm/°C. During all addition ranges, the relative dielectric constants (?r) were different and ranged from 32.0 to 41.9, the quality factors (Q × f) were distributed in the range of 928–60,231 GHz, and the temperature coefficient (τf) varies from 0.3 ppm/°C to 70.3 ppm/°C. Noticeably, a nearly zero τf can be found for doping 5 mol% Bi2O3 sintering at 1325 °C. It implies that nearly zero τf can be achieved by appropriately adjusting the amount of Bi2O3 additions and sintering temperature for La(Mg0.5Ti0.5)O3 ceramics.  相似文献   

3.
A new low loss spinel microwave dielectric ceramic with composition of ZnLi2/3Ti4/3O4 was synthesized by the conventional solid-state ceramic route. The ceramic can be well densified after sintering above 1075 °C for 2 h in air. X-ray diffraction data show that ZnLi2/3Ti4/3O4 ceramic has a cubic structure [Fd-3m (227)] similar to MgFe2O4 with lattice parameters of a = 8.40172 Å, V = 593.07 Å3, Z = 8 and ρ = 4.43 g/cm3. The best microwave dielectric properties can be obtained in ceramic with relative permittivity of 20.6, Q × f value of 106,700 GHz and τf value of −48 ppm/°C. The addition of BaCu(B2O5) (BCB) can effectively lower the sintering temperature from 1075 °C to 900 °C and does not induce much degradation of the microwave dielectric properties. Compatibility with Ag electrode indicates that the BCB added ZnLi2/3Ti4/3O4 ceramics are good candidates for LTCC applications.  相似文献   

4.
(Mg1−xZnx)2SiO4 ceramics were prepared and characterized. The densification temperatures of the present ceramics are much lower than those for Mg2SiO4 and Zn2SiO4 end-members. Small solid solution limits of Zn in Mg2SiO4 and Mg in Zn2SiO4 are observed, and the bi-phase structure is confirmed in (Mg1−xZnx)2SiO4 ceramics with x = 0.1–0.9. Even though, it is clear that the Qf value of Zn2SiO4 ceramics can be significantly improved together with a suppressed temperature coefficient of resonant frequency τf by substituting Mg for Zn. (Mg0.4Zn0.6)2SiO4 ceramics indicate a good combination of microwave dielectric characteristics: r = 6.6 Qf = 95,650 GHz, and τf = −60 ppm/°C.  相似文献   

5.
Ca0.28Ba0.72Nb2O6 (CBN28) ceramics with addition of CeO2 and La2O3, were prepared by the conventional ceramic fabrication technique. XRD results showed that the single tungsten bronze structure of CBN28 was not changed by adding CeO2 or La2O3. SEM results indicated that both CeO2 and La2O3 dopants were effective in inhibiting the grain growth and suppressing the anisotropic growth behavior in tungsten bronze structure. It was also found that both two kinds of dopants had remarkable effects on the dielectric and ferroelectric properties of CBN28 ceramics. Compared with CBN28 ceramics, the dielectric constant around room temperature εr, dielectric loss tan δ, the degree of diffuseness γ and coercive field Ec were all ameliorated when doping proper amount of CeO2 or La2O3. The comprehensive electric performance was obtained in CBN28–0.3 wt% CeO2 and CBN28–0.4 wt% La2O3 ceramics. Besides, the underlying mechanism for variations of the electrical properties due to different dopants was explained in this work.  相似文献   

6.
The sintering behavior and dielectric properties of the monoclinic zirconolite-like structure compound Bi2(Zn1/3Nb2/3)2O7 (BZN) and Bi2(Zn1/3Nb2/3−xVx)2O7 (BZNV, x = 0.001) sintered under air and N2 atmosphere were investigated. The pure phase were obtained between 810 and 990 °C both for BZN and BZNV ceramics. The substitution of V2O5 and N2 atmosphere accelerated the densification of ceramics slightly. The influences on microwave dielectric properties from different atmosphere were discussed in this work. The best microwave properties of BZN ceramics were obtained at 900 °C under N2 atmosphere with r = 76.1, Q = 850 and Qf = 3260 GHz while the best properties of BZNV ceramics were got at 930 °C under air atmosphere with r = 76.7, Q = 890 and Qf = 3580 GHz. The temperature coefficient of resonant frequency τf was not obviously influenced by the different atmospheres. For BZN ceramics the τf was −79.8 ppm/°C while τf is −87.5 ppm/°C for BZNV ceramics.  相似文献   

7.
The influence of various sintering aids on the microwave dielectric properties and the structure of Nd(Mg0.5Ti0.5)O3 ceramics were investigated systematically. B2O3, Bi2O3, and V2O5 were selected as liquid-phase sintering aids to lower the sintering temperature. The sintered Nd(Mg0.5Ti0.5)O3 ceramics are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and microwave dielectric properties. The sintering temperature of Nd(Mg0.5Ti0.5)O3 microwave dielectric ceramics is generally high, about 1500 °C. However, the sintering temperature was significantly lowered about 175 °C from 1500 °C to 1325 °C by incorporating in 10 mol% B2O3 and revealed the optimum microwave dielectric properties of dielectric constant (r) value of 26.2, a quality factor (Q × f) value of 61,307 (at 9.63 GHz), and τf value of −45.5 ppm/°C. NdVO4 secondary phase was observed at 10 mol% V2O5 addition in the sintering temperature range of 1300–1325 °C, which led the degradation in microwave dielectric properties. The microwave dielectric properties as well as grain sizes, grain morphology, and bulk density were greatly dependent on sintering temperature and various sintering aids. In this study, it is found that Nd(Mg0.5Ti0.5)O3 incorporated with 10 mol% B2O3 with lower sintering temperature and excellent dielectric microwave properties may be suggested for application in microwave communication devices. The use of liquid-phase sintering, the liquid formed during firing normally remains as a grain boundary phase on cooling. This grain boundary phase can cause a deterioration of the microwave properties. Therefore, the selection of a suitable sintering aid is extremely important.  相似文献   

8.
Ce2(WO4)3 ceramics have been synthesized by the conventional solid-state ceramic route. Ce2(WO4)3 ceramics sintered at 1000 °C exhibited ?r = 12.4, Qxf = 10,500 GHz (at 4.8 GHz) and τf = −39 ppm/°C. The effects of B2O3, ZnO–B2O3, BaO–B2O3–SiO2, ZnO–B2O3–SiO2 and PbO–B2O3–SiO2 glasses on the sintering temperature and microwave dielectric properties of Ce2(WO4)3 were investigated. The Ce2(WO4)3 + 0.2 wt% ZBS sintered at 900 °C/4 h has ?r = 13.7, Qxf = 20,200 GHz and τf = −25 ppm/°C.  相似文献   

9.
Dependence of microwave dielectric properties on the crystal structure of (Zn1/3B2/35+)xTi1 − xO2 (B5+ = Nb, Ta) ceramics was investigated as a function of Zn1/3B2/35+O2 (B5+ = Nb, Ta) content (0.4 ≤ x ≤ 0.7). Dielectric constant (K) and the temperature coefficient of resonant frequency (TCF) of sintered specimens were strongly dependent on the structural characteristics of oxygen octahedra in rutile structure. Cation rattling and the distortion of oxygen octahedra were dependent on the bond length ratio of apical (dapical)/equatorial (dequatorial) of oxygen octahedra. The quality factor (Qf) was dependent on the reduction of Ti ion as well as the microstructure of the sintered specimens.  相似文献   

10.
We have synthesized Li2O–Nb2O5–ZrO2–SiO2 glasses and subsequently crystallized them with different CuO contents (0–0.3 mol% in the steps of 0.05) as nucleating agents and characterized them by XRD, SEM and DSC. We have also studied IR, Raman, ESR, optical absorption photoluminescence and dielectric properties to explore the influence of copper valance states and their coordination with oxygen on structural and optoelectronic aspects of the samples. These studies have indicated that there is a possibility for the copper ions to exist in Cu+ and Cu3+ states (in addition to Cu2+ state) in these glass ceramics and participate in the glass network forming. Finally, we have undertaken photoinduced second harmonic generation studies (after the samples were dc field treated at elevated temperatures) with 10 ns Er:glass laser (of wavelength 1540 nm with power densities up to 1.5 GW/cm2) to examine the suitability of these materials for optically operated devices. The analysis of the results of non-linear optical studies has shown that 0.2 mol% of CuO is the optimal concentration for getting the highest values of second order susceptibility coefficients.  相似文献   

11.
The lead-free piezoelectric ceramics (Na.47Bi.47Ba.06)1-xCaxTiO3 (x?=?0, 0.01, 0.02, 0.03, 0.05, and 0.08, abbreviated as BNBTC/0, BNBTC/1, BNBTC/2, BNBTC/3, BNBTC/5, and BNBTC/8, respectively) were obtained using the solid-state reaction method. The structure, electric conductivity, and dielectric, ferroelectric, and piezoelectric properties of the Ca2+-doped (Na.47Bi.47Ba.06)TiO3 ceramics were thoroughly investigated. The ceramics sintered at 1200?°C exhibit dense microstructures, having relative densities higher than 96%. The X-ray diffraction results demonstrate that all ceramics have a pure perovskite structure. The mean grain sizes of the ceramics are related to the Ca2+ quantity. A small quantity of Ca2+ ions (x?≤?0.03) improves the piezoelectric and ferroelectric properties of the samples. The dielectric behavior of the samples is sensitive to the Ca2+ content and electric poling. The results demonstrate that the electrical properties of the (Na.47Bi.47Ba.06)TiO3 lead-free ceramics can be well tuned by varying the Ca2+ quantity.  相似文献   

12.
The microwave dielectric properties of Sm(Mg0.5Ti0.5)O3 incorporated with various amount of Bi2O3 and B2O3 additives have been investigated systematically. In this study, both Bi2O3 and B2O3 additives acting as a sintering aid can effectively lower the sintering temperature from 1550 °C to 1300 °C. The ionic radius of Bi3+ for a coordination number of 6 is 0.103 nm, whereas the ionic radius of B3+ is 0.027 nm. Clearly, the ionic radius of Bi3+ is greatly larger than one of B3+, which resulted in the specimens incorporated with Bi2O3 having larger lattice parameters and cell volume than those incorporated with B2O3. The experimental results show that no second phase was observed throughout the entire experiments. Depending on the interfacial tension, the liquid phase may penetrate the grain boundaries completely, in which case the grains will be separated from one another by a thin layer as shown in Sm(Mg0.5Ti0.5)O3 ceramics incorporated with Bi2O3. Whereas, in Sm(Mg0.5Ti0.5)O3 ceramics incorporated with B2O3, the volume fraction of liquid is high, the grains may dissolve into the liquid phase, and rapidly rearrange, in which case contact points between agglomerates will be dissolved due to their higher solubility in the liquid, leading plate-like shape microstructure.A dielectric constant (?r) of 29.3, a high Q × f value of 26,335 GHz (at 8.84 GHz), and a τf of −32.5 ppm/°C can be obtained for Sm(Mg0.5Ti0.5)O3 ceramics incorporated with 10 mol% Bi2O3 sintered at 1300 °C. While Sm(Mg0.5Ti0.5)O3 ceramics incorporated with 5 mol% B2O3 can effectively lower temperature coefficient of resonant frequency, which value is −21.6 ppm/°C. The Sm(Mg0.5Ti0.5)O3 ceramic incorporated with heavily Bi2O3 and B2O3 additives exhibits a substantial reduction in temperature (∼250 °C) and compatible dielectric properties in comparison with that of an un-doped one. This implied that this ceramic is suitable for miniaturization in the application of dielectric resonators and filters by being appropriately incorporated with a sintering aid.  相似文献   

13.
PbTiO3 and/or BaTiO3 were systematically introduced into Pb(Zn1/2W1/2)O3 and resultant phase developments in terms of perovskite formation were investigated. Ceramic powders were prepared via a B-site precursor route to further assist the perovskite formation. Weak-field dielectric properties of the sintered samples were examined. For Pb(Zn1/2W1/2)O3-rich compositions, multiphase ceramics resulted and formation of monophasic perovskite turned out to be not successful even by the B-site precursor method. Values of the perovskite formation yield and the maximum dielectric constant increased with increasing fractions of the substituent species.  相似文献   

14.
This study aims to fabricate Li2Mg3TiO6 ceramics with ultrafine grains using a novel cold sintering process combined with a post-annealing treatment at a temperature <?950?°C. In this study, phase composition, sintering behavior, microstructure evolution, and microwave dielectric properties of the resultant nanocrystalline ceramics were investigated for the first time. The as-compacted green pellets at 180?°C yielded a high relative density of ~ 90% and the ceramics that were post-sintered over a broad temperature range (800–950?°C) possessed highly dense microstructure with a relative density of ~ 96%. The average grain size varied from 100 to 1200?nm for the samples sintered at 800–950?°C. Furthermore, the quality (Q × f) values of the obtained specimens exhibited a strong positive dependency on the grain size, which increased from 17,790 to 47,960?GHz for grain sizes ranging between 100 and 1200?nm, while the dielectric permittivity (εr) and temperature coefficient of the resonant frequency (τf) values did not undergo any significant changes over this range of grain size.  相似文献   

15.
《Ceramics International》2017,43(2):2246-2251
Ultrahigh-Q Li2(1+x)Mg3ZrO6 microwave dielectric ceramics were successfully prepared by means of atmosphere-controlled sintering through simultaneously adopting double crucibles and sacrificial powder. This technique played an effective role in suppressing the lithium volatilization and further promoting the formation of the liquid phase, as evidenced by the X-ray diffraction, microstructural observation and the density measurement. Both dense and even microstructure, and the suppression of detrimental secondary phases contributed to low-loss microwave dielectric ceramics with Q×f values of 150,000–300,000 GHz. Particularly, desirable microwave dielectric properties of εr=12.8, Q×f=307,319 GHz (@9.88 GHz), and τf=−35 ppm/°C were achieved in the x=0.06 sample as sintered at 1275 °C for 6 h.  相似文献   

16.
LiNi0.8Co0.15Al0.05O2, being one of the promising cathode materials for lithium-ion batteries, shows distinct capacity fades after charge/discharge cycling and/or storage at high temperatures. The origin of the capacity fade has been explored by investigating the electronic and structural changes of the cathode material using X-ray absorption spectroscopy (XAS). Ni K-edge XAS measurements were performed in two different modes: surface-sensitive conversion electron yield (CEY) mode and bulk-sensitive transmission mode. Ni K-edge XANES data revealed that, after the cycling and aging tests, the bulk-averaged Ni valences were reduced, implying the existence of divalent Ni atoms. Further reductions of Ni atoms were observed at the surface of the cathode material particles, and the ranges of the Ni valence change upon charging became narrower, indicating the existence of the Ni atoms that did not oxidize. These changes which occur prominently at the surface are probably the main causes of the capacity fade.  相似文献   

17.
Ca0.9La0.067TiO3 (abbreviated as CLT) ceramics doped with different amount of Al2O3 were prepared via the solid state reaction method. The anti-reduction mechanism of Ti4+ in CLT ceramics was carefully investigated. X-ray diffraction (XRD) was used to analyze the phase composition and lattice structure. Meanwhile, the Rietveld method was taken to calculate the lattice parameters. X-ray photoelectron spectroscopy (XPS) was employed to study the valence variation of Ti ions in CLT ceramics without and with Al2O3. The results showed that Al3+ substituted for Ti4+ to form solid solution and the solid solubility limit of Al3+ is near 1.11 mol%. Furthermore, the reduction of Ti4+ in CLT ceramics was restrained by acceptor doping process and the Q × f values of CLT ceramics were improved significantly. The CLT ceramic doped with 1.11 mol% Al2O3 exhibited good microwave dielectric properties: εr = 141, Q × f = 6848 GHz, τf = 576 ppm/°C.  相似文献   

18.
19.
Polycrystalline ceramic samples of pure fresnoite compound of formula Ba2TiOSi2O7 and germanium (Ge4+) doped compound Ba2TiOSi1.8Ge0.2O7 have been prepared by standard solid state reaction technique using high purity oxides and carbonates. The pure compound of fresnoite was sintered at 1300 °C while the Ge4+ substituted compound was sintered into pellet form at 1180 °C. The formation of the single phase compound was confirmed by X-ray diffraction (XRD) and the structural parameters were refined by the Rietveld analysis. A good agreement between observed and calculated X-ray diffraction pattern was obtained from the Rietveld refinement using noncentrosymmetric space group P4bm. The bond distances along with bond angles between atoms for both the compounds as well as the position of the atoms in the unit cell were calculated which supports the structural results. The grain size of both the compounds was investigated from SEM micrographs. The results are discussed in detail.  相似文献   

20.
ZrB2/Zr2Al4C5 composite ceramics with different volume contents of Zr2Al4C5 formed in situ were fabricated by the spark plasma sintering technique at 1800 °C. The content of Zr2Al4C5 was found to have an evident effect on the preparation, phase constitution, microstructure as well as the mechanical properties of ZrB2/Zr2Al4C5 ceramics. The results indicated that sinterability of the composites was remarkably improved by the addition of Zr2Al4C5 compared to the single-phase ZrB2 ceramic. The microstructure of the resulting composites was fine and homogeneous, the average grain size of the ZrB2 decreased, and the average aspect ratio of the Zr2Al4C5 increased with the increase in the amount of Zr2Al4C5. As the content of Zr2Al4C5 increased, both the Vickers hardness and Young's modulus of the composites first increased and then decreased. The fracture toughness of the ZrB2–40 vol% Zr2Al4C5 composite was 4.25 MPa m1/2, which increased by approximately 70% compared to the monolithic ZrB2 ceramic. The improvement was mainly attributed to the toughening mechanisms such as the layered structure toughening, crack deflection and crack bridging, caused by the in situ formed layered Zr2Al4C5 inclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号