首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of electrodeposition potential, pH, composition and temperature of the electrolytic bath on the structure of cobalt nanowires arrays electrodeposited into anodic aluminum oxide (AAO) porous membranes is reported. XRD, SEM, and TEM analysis were employed to characterize structural (crystal phase, crystallographic texture, and grain size), and morphological nanowire properties. It was confirmed that at pH 2 the electrodeposition potential has not influence on the preferred crystallographic orientation of the electrochemically grown Co nanowires. At pH 4 the electrodeposition potential controls the growth of cobalt nanowires along some preferential crystallographic planes. The electrolytic pH bath modulates the fcc or hcp phase exhibited by the cobalt nanowires. Single crystalline nanowires with a hcp phase strongly oriented along the (2021) crystallographic plane were obtained at pH 4 and at -1.1 V (vs. Ag/AgCl), a result not previously reported. High electrolytic bath temperatures contributed to improve the single crystalline character of the cobalt nanowires. The presence of chloride anion in the electrolytic bath also influenced on the structural properties of the resulting cobalt nanowires, improving their crystallinity. The optical reflectance of the samples shows a structure in the UV-blue region that can be assigned to the two-dimensional morphology arising in the shape of the almost parallel nanowires. Magnetic measurements showed that different electrodeposition potentials and electrolytic bath pH lead to different magnetic anisotropies on the nanowire array samples.  相似文献   

2.
Cobalt ferrite (CoFe2O4) was synthesized using sol-gel techniques from cobalt nitrate: iron nitrate: polyvinyl alcohol (PVA) gel in a ratio of 1:2:12. Variations in the amount of PVA in water (5 %, 10 % and 15 %) influenced the crystallite size and phases of the ferrite products, which in turn controlled their magnetic properties. X-ray diffraction studies indicated single phase CoFe2O4 with larger crystallite size and with the hysteresis loops displaying an increase in both coercive field and squareness as the PVA content was increased. Differential scanning calorimetry (DSC) showed that desorption of water and combustion of excess gel were clearly observed in CoFe2O4 prepared from 10 % and 15 % PVA in water. In the case of 5 % PVA in water, two other ratios of cobalt nitrate: iron nitrate: PVA solution were also tested and it was found that the 1:2:10 ratio led to the smallest coercive field and squareness.  相似文献   

3.
Pure and 10 % Gd doped BiFeO3 nanowires of 100-nm diameter have been synthesized by sol–gel template-assisted technique. Phase-dependent structural, dielectric and magnetic properties of pure and Gd doped BiFeO3 nanowires have been investigated. X-ray diffraction study reveals that pure BiFeO3 nanowires possess rhombohedral structure while 10 % Gd doped BiFeO3 nanowires are orthorhombic in nature. Magnetic study confirms that the value of saturation magnetization, increased with structural change via doping of Gd in host BiFeO3.  相似文献   

4.
In this work, the successful synthesis of ZnSe nanowires using alumina template by simple and facile electroless template technique has been reported. Morphological characterization of the synthesized nanowires has been done by X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements. The optical characterizations were conducted by UV–visible and time resolved photo-luminescence. Grain size of synthesized ZnSe nanowires was also calculated using the XRD results. The calculated crystallite size was found to be 6.80 nm. SEM analysis confirms the fabrication of nanowires successfully and it also confirms the size of the nanowires as per the template parameters. The calculated band gap value of 3.03 eV shows the origin of quantum confinement effect in ZnSe nanowires even at the 100 nm scale. The time resolved photoluminescence result indicates that the ZnSe nanowires can be a promising material for luminescent applications in micro-second time domain.  相似文献   

5.
Phase transitions and magnetic properties of shape-memory materials can be tailored by tuning the size of the constituent materials,such as nanoparticles.However,owing to the lack of suitable synthetic methods for size-controlled Heusler nanoparticles,there is no report on the size dependence of their properties and functionalities.In this contribution,we present the first chemical synthesis of size-selected Co-Ni-Ga Heusler nanoparticles.We also report the structure and magnetic properties of the biphasic Co-Ni-Ga nanoparticles with sizes in the range of 30-84 nm,prepared by a SBA-15 nanoporous silicatemplated approach.The particle sizes could be readily tuned by controlling the loading and concentration of the precursors.The fractions and crystallite sizes of each phase of the Co-Ni-Ga nanoparticles are closely related to their particle size.Enhanced magnetization and decreased coercivity are observed with increasing partide size.The Curie temperature (Tc) of the Co-Ni-Ga nanoparticles also depends on their size.The 84 nm-sized particles exhibit the highest Tc (≈ 1,174 K) among all known Heusler compounds.The very high Curie temperatures of the Co-Ni-Ga nanoparticles render them promising candidates for application in high-temperature shape memory alloy-based devices.  相似文献   

6.
7.
以介孔材料二氧化硅SBA-15为硬模板合成了具有规则纳米线排列的LaMnO_3,研究了煅烧温度、模板孔道结构对产物比表面积的影响及比表面积大小对纳米LaMnO_3材料磁性的影响.在650~700℃煅烧温度范围内,煅烧温度升高,比表面积增加,煅烧温度过高将会破坏模板的稳定性进而影响产物的结构,致使产物比表面积下降.同一煅烧温度700℃下,模板孔径越大,产物比表面积越大.纳米材料LaMnO_3的磁性受到表面及界面不饱和自旋磁矩的影响,产生铁磁性,比表面积越大,不饱和自旋磁矩越多,铁磁性越强.  相似文献   

8.
Magnetic nanowires (NWs) are ideal materials for the fabrication of various multifunctional nanostructures which can be manipulated by an external magnetic field. Highly crystalline and textured nanowires of nickel (Ni NWs) and cobalt (Co NWs) with high aspect ratio (∼330) and high coercivity have been synthesized by electrodeposition using nickel sulphate hexahydrate (NiSO4·6H2O) and cobalt sulphate heptahydrate (CoSO4·7H2O) respectively on nanoporous alumina membranes. They exhibit a preferential growth along 〈110〉. A general mobility assisted growth mechanism for the formation of Ni and Co NWs is proposed. The role of the hydration layer on the resulting one-dimensional geometry in the case of potentiostatic electrodeposition is verified. A very high interwire interaction resulting from magnetostatic dipolar interactions between the nanowires is observed. An unusual low-temperature magnetisation switching for field parallel to the wire axis is evident from the peculiar high field M(T) curve.   相似文献   

9.
10.
采用直流磁控溅射法制备SmCo薄膜,研究了退火温度对薄膜微结构及磁性能的影响。XRD分析结果表明,当退火温度为600℃时,SmCo5相析出,而Sm2Co17相在700℃析出。SEM照片可看出,退火温度高于900℃时,六方柱状的SmCo5相和菱方状的Sm2Co17相全部析出。随着退火温度的升高,晶粒尺寸增大,当温度达940℃时,晶粒尺寸减小,而在980℃时,晶粒尺寸又将增大。VSM测试表明,与制备态的薄膜相比,退火后的薄膜在垂直于膜面方向的矫顽力、剩余磁化强度及最大磁能积都增大。960℃时得到矫顽力和剩余磁化强度的最大值,800℃时得到最大磁能积的最大值。  相似文献   

11.
This work is devoted to the research of influence of annealing to ferromagnetic resonance (FMR) properties of films of the A, B series with the compositions of (Co45-Fe45-Zr10)x(Al2O3)y, multilayer films of the D series with compositions {[(Co45-Fe45-Zr10)x(Al2O3)y]-[alpha-Si]}120 and revealing their relationship with the nanostructure characteristics. The films were obtained in an argon atmosphere (the A, D series) and with addition of oxygen (the B series). All samples were deposited on substrates by the ion-beam sputtering method and were annealed. The resonant fields and width of ferromagnetic resonance (FMR) line were measured before and after annealing. The changes in the FMR field and width of the line at varying temperatures of annealing for the composite and multilayer films are analyzed in the work. The character of changes in the structural characteristics of films at different annealing temperatures is determined.  相似文献   

12.
Nanosheets of nickel catalyzed tungsten oxide have been grown on Si (100) substrate by electron beam rapid thermal annealing (ERTA) process. The thin films of W and Ni were deposited in a conventional electron beam evaporation system under high vacuum conditions and then subjected to ERTA. Scanning electron microscopy and atomic force microscopy were used to study the systematic growth of the nanosheets. Nanosheets with a uniform thickness of 200 nm were obtained for the beam current of 9 mA with a voltage of 5 kV ERTA for 60 s. X-ray diffractograms indicate that the formation of multiple phases of nickel, nickel oxide and tungsten oxide with respect to the variation in the beam current. Vibrating sample magnetometer studies indicate that the magnetic properties of this system vary with the beam current.  相似文献   

13.
吴振宇  杨银堂  汪家友 《功能材料》2006,37(7):1081-1083
采用电子回旋共振等离子体化学气相淀积(ECR-CVD)方法以C4F8和CH4为源气体制备了氟化非晶碳(a-C:F)膜并在氮气气氛中对a-C:F膜进行了退火处理研究.X光电子能谱(XPS)化学结构分析表明,退火后a-C:F膜中CF3,CF2和CF含量减少,而C-CFx(x=1~3)交联结构增多.电学性能研究指出,退火后a-C:F薄膜的介电常数由于电子极化和薄膜密度的增大而上升,Al/a-C:F/Si结构的阻滞效应由于界面态密度下降而减弱,同时a-C:F膜的π-π*带隙和电荷陷阱能量减小并导致薄膜漏电流增大.  相似文献   

14.
Tan EP  Lim CT 《Nanotechnology》2006,17(10):2649-2654
Biodegradable polymeric nanofibres produced by electrospinning have been used as scaffolds for tissue engineering. Before these nanofibrous scaffolds can be implanted into the human body, it is important to know if the individual nanofibres are strong enough to withstand the forces exerted by the cells as they grow and migrate on the scaffold. However, due to the small size of the nanofibres, it is a challenge to characterize the mechanical properties of individual nanofibres. Therefore, we aim to mechanically characterize a single nanofibre using both a tensile test and a nanoscale three-point bend test. As some scaffolds may be heat-treated by annealing to enhance the stiffness and strength of the nanofibres, we also investigate the effects of annealing on the structural and mechanical properties of single nanofibres. The material properties of as-spun and annealed nanofibres were studied using differential scanning calorimetry and atomic force microscopy. Annealing was found to increase the Young's modulus of the nanofibre mainly due to the increase in crystallinity and the change in morphology from a purely fibrillar structure to a mixture of fibrillar and nano-granular structure with enhanced interfibrillar bonding.  相似文献   

15.
The present article reports some of the interesting and important electrical and magnetic properties of nanostructured spinel ferrites such as Ni0.5Zn0.5Fe2O4 and CoFe2O4. In the case of Ni0.5Zn0.5Fe2O4, d.c. electrical conductivity increases upon milling, and it is attributed to oxygen vacancies created by high energy mechanical milling. The real part of dielectric constant (?′) for the milled sample is found to be about an order of magnitude smaller than that of the bulk nickel zinc ferrite. The increase in Néel temperature from 538 K in the bulk state to 611 K on the reduction of grain size upon milling has been explained based on the change in the cation distribution. The dielectric constant is smaller by an order of magnitude and the dielectric loss is three orders of magnitude smaller for the milled sample compared to that of the bulk. In the case of cobalt ferrite, the observed decrease in conductivity, when the grain size is increased from 8–92 nm upon thermal annealing is clearly due to the predominant effect of migration of some of the Fe3+ ions from octahedral to tetra-hedral sites, as is evident from in-field Mössbauer and EXAFS measurements. The dielectric loss (tan δ) is an order of magnitude smaller for the nano sized particles compared to that of the bulk counterpart.  相似文献   

16.
Journal of Materials Science: Materials in Electronics - Spinel cobalt ferrite (CoFe2O4) has been prepared using the citrate precursor sol–gel method. The synthesized samples have been...  相似文献   

17.
The static magnetization of pure Al and Tl, and of Pt containing 70 ppm Fe, has been measured over the temperature range 10–400 mK. It is shown that the temperature-dependent magnetism of pure Al and Tl can be attributed to nuclear magnetism only, with calculated Curie constants 6.9×10–8 and 1.7×10–8 K, respectively. The magnetization of Pt containing 70 ppm Fe in a magnetic field of 10 Oe was found to obey a Curie-Weiss law over the entire temperature range studied. The adequacy of Cu, Al, Tl, and Pt as magnetic thermometers in the millidegree temperature region is discussed.This research was supported in part by the U.S. Atomic Energy Commission under Contract No. AT(04-3)-34, P.A. 143.  相似文献   

18.
Microwave-assisted co-precipitation method was adopted to analyze the effect of polyethylene glycol (PEG) and urea concentrations on the properties of cobalt ferrite nanoparticles (NPs). The average crystallite size of single phase cubic spinel cobalt ferrite NPs was controlled within 10–14 nm with the effect of PEG, urea and the combination of them. The transmission electron micrographs revealed that the morphology of cobalt ferrites was not significantly influenced by the different concentration of capping agents but almost uniform morphology with nearly narrow size distribution was obtained. The interaction of PEG and urea molecules on the surface of nanoparticles was mediated through –OH hydroxyl group affected the crystal growth rate. The possible interaction mechanism was proposed with the help of IR vibrational spectra. All the samples exhibited ferromagnetism at room temperature and it was found that the capping agents showed an effect on the magnetic properties. The maximum saturation magnetization of 58 emu/g was achieved when the urea of 60 mg was used and the maximum coercivity of 311 Oe was attained when the mixture of PEG (40 mg) and urea (20 mg) were used. Ultrafine and hydrophilic cobalt ferrite NPs that showed appreciable magnetic properties obtained in the present experimental procedure would be of great interest in various biomedical applications.  相似文献   

19.
Indium rich (In-rich) InGaN films were grown on Ge (111) substrate by plasma assisted molecular beam epitaxy with thin GaN as a buffer layer. The effects of annealing temperature and annealing time on the structural properties of In-rich InGaN films were investigated by X-ray diffraction (XRD). XRD results indicate that the as-grown InGaN films annealed at different temperatures for 1 min and 1 h respectively did not improve the film crystalline quality. But with the annealing at 750 °C and 800 °C for 1 min respectively the metallic indium was desorbed from the InGaN structure. The InGaN films annealed at higher than 660 °C for 1 h also showed the indium desorption. The InGaN film has the best film quality after annealed at 660 °C for 6 h with the full-width at half-maximum of InGaN (002) peak to be 879 arcsec. The InGaN crystalline quality started to degrade after annealed at the temperatures higher than 660 °C for 6 h.  相似文献   

20.
This paper presents structural, magnetic, and transport properties measurements carried out on Co thin film as a function of thickness. The structure of the Co thin film changes from amorphous to nano-crystalline with the increase in film thickness. The corresponding magnetic and transport measurements show drastic changes in coercivity, saturation field and resistivity value as a function of Co film thickness. Observed magnetization and resistivity behaviour is mainly attributed to the (i) Change in crystal structure, (ii) stress relaxation, (iii) grain growth as revealed by X-ray diffraction (XRD), and atomic force microscopy (AFM) measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号