首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
钢支撑的轴力变化是深基坑监测的重要内容,它是验证深基坑设计合理性,保证安全施工的重要依据。武汉地铁名都站深基坑因开挖深度大、周边高层建筑物多、管线密布等原因,钢支撑的支护作用对于维持该基坑的稳定性尤为重要,所以监测和研究钢支撑轴力的变化,对于分析基坑稳定性具有十分重要的意义。以名都站深基坑钢支撑监测数据为基础,分析深基坑开挖过程中钢支撑轴力的变化情况。同时,采用莫尔-库仑本构模型,建立了各道钢支撑在不同开挖阶段的轴力分布模拟云图,并进行有限元分析,得到了深基坑施工过程中的钢支撑轴力变化规律。此外,还对各横撑与斜撑的轴力模拟计算最大值与监测最大值进行了对比分析,得出模拟值与监测值较为接近,为后续武汉地铁深基坑的设计和施工总结了值得借鉴的经验。  相似文献   

2.
钢支撑由于施工方便,架设、拆除快速,可以反复使用等成为内支撑优先考虑的支撑形式.介绍了天津市某地铁车站深基坑方案选择及其监测点布置和基坑开挖工况,对钢筋混凝土-钢支撑组合支撑体系轴力进行监测.通过分析支撑体系的受力变化和地下连续墙变形规律,证明其协同工作的优越性和合理性.  相似文献   

3.
基坑稳定性对于地铁工程的顺利完成有很大作用,而钢支撑轴力的变化可以反映基坑中土压力的变化,这得益于钢支撑结构受力明确。通过对天津某地铁车站明挖深基坑工程钢支撑轴力的监测资料进行分析,得出基坑开挖过程中各层钢支撑轴力的变化规律,对于分析基坑稳定性具有重要意义。同时,运用有限元软件MIDAS/GTS对基坑开挖施工阶段进行模拟分析,得出基坑在不同开挖阶段钢支撑轴力云图,并与实际施工阶段较为接近。  相似文献   

4.
为保证基坑安全施工,验证新型钢支撑的支护效果,对南京国际博览中心三期基坑钢支撑进行有限元分析和监测。该基坑开挖深度大、土层条件差、设置1道内支撑,主要监测的项目有钢支撑轴力和温度、钢支撑挠度、立柱隆沉、钢支撑支护区域测斜、坑顶位移等。结果表明:支撑轴力随着基坑开挖至坑底增大,有限元计算的支撑轴力和监测结果一致。轴力随着温度的变化为30~50kN/℃。钢支撑挠度和立柱微小的变化,不影响支撑体系的安全稳定。钢支撑的支护效果略优于混凝土支撑,变形在设计和规范允许的范围。  相似文献   

5.
温度变化对钢支撑轴力安全有重要影响。虽然采用伺服系统的钢支撑,轴力较普通钢支撑更大,但温度变化严重影响着伺服系统对钢支撑的轴力调控。通过理论分析和现场测试,了解了温差对钢支撑轴力变化和基坑收敛的影响规律,提出合理的伺服系统轴力设定值,对夏季钢支撑的安全和伺服系统的合理应用有重要作用。  相似文献   

6.
某地铁深基坑支护体系内力与变形监测结果分析   总被引:4,自引:2,他引:4  
对某地铁深基坑支护结构内力与变形监测结果进行了分析。监测结果表明 ,施加的锚杆预应力有 10 %~ 2 5 %的损失 ,在开挖过程中锚杆轴力有一定程度的增加 (约 10 %左右 )。钢支撑的轴力随开挖深度的增加而增加 ,轴力大小变化与基坑开挖方式、速度及下层支撑的逐一拆除有关。支护桩体的变形随桩深、支撑条件变化而变化。基坑顶部的水平位移以坑壁中央最大 ,靠端部位移较小。  相似文献   

7.
通过对北京地铁某线标段的基坑开挖过程进行现场监测,研究分析该方案在实施过程中围护结构水平位移、钢支撑内力、桩体内力及桩土压力的分布和变化规律。研究表明:桩体位移变化值较小;钢支撑内力最大值远小于规范报警值;桩内力和土压力所得数值均在安全范围内,对类似基坑开挖支撑方案的设计及其优化具有重要的参考价值。  相似文献   

8.
基于郑州市轨道交通4号线如意湖北站基坑工程,选取5个断面进行现场试验,第2、4道钢支撑施加不同幅度的预加轴力,现场监测了基坑开挖全过程中支撑轴力和地下连续墙墙体的水平位移,分析总结了支撑轴力和地下连续墙墙体水平位移随基坑开挖的变化规律.运用ABAQUS建立了基坑开挖三维有限元模型,得到数值分析结果,再与实测结果进行对比...  相似文献   

9.
为保证基坑施工安全及了解基坑开挖时围护结构和支撑体系的受力、变形特点,对某人防工程深基坑进行了安全监测,共设置了水平位移、沉降、测斜、支撑轴力、钢筋应力和地下水位等监测项目。根据现场测试数据发现,基坑围护体系及周边环境的受力、变形在土方开挖期间变化较为显著,而在非开挖期间则相对稳定,钢筋混凝土支撑一般截面面积较大,控制地下连续墙侧向位移的效果比钢支撑好。现场监测是保证深基坑施工安全、验证设计理论的有效手段。  相似文献   

10.
依托兰州市地铁某车站基坑工程,对基坑施工过程中的桩顶水平和竖向位移、地表沉降、钢支撑轴力及地下水位进行了监测,并对监测数据进行了系统分析。监测结果分析表明,桩顶水平位移随着基坑的开挖由小变大逐渐趋于平稳,桩顶竖向位移随着开挖深度的增加而逐渐增加,在开挖的过程中钢支撑的轴力趋于稳定。最后借助有限元软对基坑开挖进行了数值模拟,并将模拟结果与监测结果进行了对比分析,结果表明,数值模拟和监测结果变化规律基本一致,证明了钻孔灌注桩联合钢管内支撑结构安全可行,保证和维护了基坑的稳定,为类似基坑的施工提供了有效可靠的参考资料。  相似文献   

11.
深圳平安金融中心基坑围护结构变形监测分析   总被引:1,自引:0,他引:1  
以深圳平安金融中心基坑为研究背景,针对基坑围护结构特点,对其变形监测方案进行设计。结合基坑围护结构变形现场监测数据,重点分析基坑施工过程中围护结构的水平变形随基坑开挖深度和时间的变化规律、基坑开挖钢支撑轴力随时间的变化规律,结果表明基坑围护结构设计是安全的。同时,结合基坑地表沉降监测数据,分析基坑开挖引起的地表沉降变化规律,得出基坑开挖地表沉降可分为沉降量线性增长阶段、沉降速率不断增加阶段、沉降速率递减阶段以及沉降趋于稳定4个阶段。在此基础上,针对沉降变形的变化规律,引入Usher沉降预测模型,建立基坑开挖地表沉降预测模型。实测数据与预测值吻合较好,表明该方法的可行性。  相似文献   

12.
以某地铁车站深基坑工程为依托,介绍了该工程拟建场区的周边环境、水文地质条件以及支护结构选型。根据工程特点将其分为六个典型工况,运用FLAC3D建立三维数值模型对基坑开挖进行数值模拟计算,旨在研究"钻孔咬合桩+内支撑"这一支护结构在地铁车站深基坑工程施工中的变形规律,分析了其水平位移、钢支撑轴力及其周围土体的沉降规律和沉降影响范围。并根据支撑位置的不同对深基坑变形的影响,对该基坑工程的支护设计方案进行了优化。通过与原方案的对比,得出优化方案在控制变形等方面有一定的改善。本文的研究成果可为今后地铁车站深基坑工程的合理设计与安全施工提供参考。  相似文献   

13.
以某地铁车站深基坑为背景,对施工期间的围护墙体水平位移、墙体沉降、地下水位、钢支撑轴力和立柱隆沉等监测数据进行分析。实测结果表明:基坑开挖到基底时,坑壁2/3深度处水平变位最大,达7.57 mm;钢支撑轴力远小于设计值,有较大的空间可以利用,可对设计进行优化;地下水位的变化说明车站的施工未对周围环境造成太大影响;坑底最大隆起值为13.8 mm,墙体最大水平变位7.5 mm,地表沉降最大值为-2.4 mm,均远小于警戒值。监测数据及分析表明,基坑采用地下连续墙加3道支撑的支护方案是安全可行的。  相似文献   

14.
为了有效评估预应力鱼腹式基坑钢支撑抗倒塌能力,利用“拆除构件法”,开展了该预应力支撑体系的冗余度研究。基于验证后的三维预应力鱼腹式钢支撑体系有限元模型,实现了深基坑施工全过程模拟,获得了不同开挖阶段预应力筋轴力和桩体位移等参数的变化规律。研究表明:在施工过程中应更关注钢绞线和支撑轴力的监测,通过及时对钢绞线进行补张拉和调整支撑的预加轴力控制基坑的变形;二层支撑的各杆件冗余度比一层支撑更小即更为关键;在各构件的横向比较中,对撑的冗余度<角撑的冗余度<钢绞线的冗余度,即对撑失效对结构连续性倒塌的抵御能力最差。  相似文献   

15.
考虑某市妇女活动中心大楼地质条件及周边环境特点,通过方案优选提出了基坑SMW工法的施工方案;基于有限差分理论,采用FLAC3D计算软件对基坑不同开挖工况下基坑坑底回弹、基坑周围地表沉降、钢支撑内力及SMW围护结构的侧移变形进行了模拟计算,结果表明:基坑开挖过程中坑底出现明显的回弹变形,基坑周边由于地表附加荷载的影响出现一定的沉降,支护墙侧向水平位移随开挖深度的增加而增大,布设横向钢支撑后墙体的侧移得到有效控制,钢支撑轴力随开挖深度的增大而增大。采用SMW工法进行施工,坑底回弹变形、支护结构内力及支护墙侧移量都在安全控制范围以内,由此表明采用SMW工法进行支护设计是合理可靠的。  相似文献   

16.
地铁深基坑周边环境较为复杂,控制既有建筑物及周边环境变形是基坑工程的重点。本文研究了杭州软弱地层地铁深基坑围护结构、周边建筑物变形规律,探讨了围护结构侧向位移与土体水平位移之间的关系。结果表明,围护结构侧向位移曲线呈S型,伺服钢支撑可减小围护结构侧向位移,但轴力过大会使围护结构向坑外方向变形;地下连续墙侧向变形和土体水平变形呈线性关系。  相似文献   

17.
随着基坑开挖深度不断加大,基坑开挖过程对已施工坑底工程桩的受力和变形影响不容忽视,针对该问题,对深开挖条件下桩基进行了桩身内力及位移的工程现场实测。对比分析不同位置及不同长度的坑底桩基在开挖过程中的受力和变形规律。结合工程建立三维数值分析模型,基桩采用钢筋混凝土损伤模型,探究了基坑开挖深度、桩的相对位置等因素对桩身轴力、桩土侧摩阻力和桩身刚度的影响规律。结果表明:基坑开挖过程中,桩身受拉力作用;桩身混凝土在产生塑性应变前,桩身拉力随开挖深度增加逐渐增大;桩身混凝土应变超过极限拉应变后,拉力开始逐渐降低,桩身塑性区侧摩阻力变化显著。此外,坑底桩位置和桩长是影响其受力变形特性的重要因素。相同位置处,长桩的桩顶竖向位移更小;靠近基坑中心部位的桩顶竖向位移大,桩身塑性拉应变区较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号