首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
“Grinding Mechanism having Advanced Secondary Rotational Axis” (GMASRA) is one of the newer plane surface grinding methods that have an uncommon abrasion mechanism. Unlike conventional methods, in GMASRA, there are two rotations of a wheel. The first rotation is the same as in conventional grinding methods, which is the circumferential rotation. The other rotation is the newly developed axial rotation, where the wheel rotates around itself perpendicular to its radial axis. In this study, the effects of certain cutting parameters on arithmetical mean deviation of the assessed profile (the Ra parameter) were investigated. Particularly, the effects of cutting parameters on Ra in the GMASRA grinding process were examined. The selected cutting parameters were the depth of cut, the number of axial revolutions of the wheel, and the stepover distance of the wheel. Five wheels with different properties were chosen. Additionally, GMASRA was modeled using the Taguchi orthogonal test design. In this orthogonal design, the depth of cut, the spindle speed, and the type of grinding wheel were chosen as the control factors. The effect of the specified control factors on the surface roughness was demonstrated using an analysis of variance (ANOVA) test. Results show that GMASRA produced better Ra values than the conventional method. Ra values were very close to each other in every part of the ground workpieces. According to the modeling results, the spindle speed had the highest effect on Ra, followed by the depth of cut and the type of grinding wheel. GMASRA is also very cost effective and can be adapted to most milling machines and CNC milling machines.  相似文献   

2.
Two types of blade-tip rubbing due to the static misalignment of the bladed-disk center and casing center and casing deformation are simulated. By applying aerodynamic load in the blade lateral/flexural direction, vibration responses due to blade-casing rubbing are analyzed under the run-up process with constant angular acceleration and the steady-state process at 10000 rev/min. The effects of some parameters, such as the static misalignment e c, casing stiffness k c and casing deformation n p, on the system vibration responses are also illustrated by spectrum cascades, time-domain waveforms of displacement, normal rubbing forces, amplitude spectra and the impulse P in a single blade-casing rubbing period. The results show that blade-tip rubbing will cause amplitude amplification and harmonic resonance phenomena when the multiple frequencies (nf r) of rotational frequency (f r) coincide with the first three flexural dynamic frequencies of the blade (f n1, f n2 and f n3). For example, the displacement amplitudes at 3f r, 14f r and 38f r are large and the vibration is dominant near f n1. In addition, the casing deformation mainly excites the dominant Blade passing frequency (BPF), which is related to the casing deformation coefficient n p. By comparing these impulse values, for the selected parameters in this paper, the casing stiffness has a greater effect on impulse than the static misalignment and casing deformation coefficient. The impulse shows a linear increase trend with the increasing static misalignment, and it decreases under the large n p because the contact time decreases with the increase of n p.  相似文献   

3.
The diffuser of a reactor coolant pump was optimized using an orthogonal approach with numerical simulation to improve the pump hydraulic performance. Steady simulation was conducted by solving Reynolds-averaged Naiver-Stokes equations with the SST k-ω turbulence model using CFX code. The influence of the diffuser geometric parameters, namely, S, φ, α 4, b 4, δ 2, R t and R 4, on the pump performance were determined. L18 (37) orthogonal table was chosen for the optimization process. Best indicators were determined, and range analysis of energy losses, head, and efficiency at the rated condition was performed. Optimal parameters of the diffuser were S = 490 mm, φ = 36°, α 4 = 30°, b 4 = 200 mm, δ 2 = 20 mm, R t = 5 mm and R 4 = 565 mm. The final design was experimentally tested. Simulation results showed more remarkable performance than the experimental result. However, the numerical predictions and experimental results were consistent, validating the design procedure. Loading of the impeller and diffuser blades was analyzed to investigate the direct impact on the hydrodynamic flow field. The head was 14.74 m, efficiency was 79.6 %, and efficiency of the prototype pump was 83.3 % when the model pump functioned at the rated conditions. Optimization results showed that efficiency and head were improved at the design condition.  相似文献   

4.
Sources of high-power ultra-wideband electromagnetic pulses of nanosecond duration are described. A bipolar voltage pulse with a length of 0.5 ns and an amplitude of ~200 kV is fed to the input of a radiating system (a 16-element array antenna or a single antenna). The values of the effective radiation potential E p R = 260 kV for a source with a single antenna and E p R = 690 kV for a source with a 16-element antenna array were obtained at a pulse repetition frequency of 100 Hz.  相似文献   

5.
This paper focuses on the mechanical characterization of a bioceramic based on commercial alumina (Al2O3) mixed with synthesized tricalcium phosphate (β-TCP) and commercial titania powder (TiO2). The effect of β-TCP and TiO2 addition on the mechanical performance was investigated. After a sintering process at 1600 °C for 1 h, various mechanical properties of the samples have been studied, such as compressive strength, flexural strength, tensile strength, elastic modulus, and fracture toughness. The measurements of the elastic modulus (E) and the tensile strength (σ t ) were conducted using the modified Brazilian test while the compressive strength (σ c ) was determined through a compression test. Also, semi-circular bending (SCB) specimens were used to evaluate the flexural strength (σ f ) and the opening mode fracture toughness (K IC). From the main results, it was found that the best mechanical performance is obtained with the addition of 10 wt.% TCP and 5 wt.% TiO2. Alumina/10 wt.% tricalcium phosphate/5 wt.% titania composites displayed the highest values of mechanical properties and a good combination of compressive strength (σ c ?≈?352 MPa), flexural strength (σ f ?≈?98 MPa), tensile strength (σ t ?≈?86.65 MPa), and fracture toughness (K IC?≈?13 MPa m1/2).  相似文献   

6.
A simple method is proposed for determining the critical pressure that does not destroy Cd x Hg1?x Te diodes in hybrid assembling. The method allows obtaining a set of data that reliably define the critical parameter (the value of force) of the flip-chip hybrid FPA process. The method was tested on Cd x Hg1?x Te samples (x = 0.21). It is found that the abrupt change in the electrophysical properties of the material occurs when the diameter of indium bumps increases 2 times and more during compression at a pressure of about 3 kg/mm2. The obtained gage load/bump deformation dependences show that this pressure corresponds to the beginning of the region of indium strengthening on the deformation curve.  相似文献   

7.
Self-resonating pulsed waterjet (SRPW) is superior to plain waterjet in many ways and is being employed in numerous applications. To further improve the performance of SRPW, the optimal value of the preferred Strouhal number (Sd), which is used to determine the chamber length of a self-resonating nozzle, was experimentally studied at inlet pressures of 10 MPa and 20 MPa. The axial pressure oscillation peak and amplitude were used to evaluate the performance of SRPW, in order to find the optimum Sd value. Results show that Sd value determines the self-resonance behavior of an organ-pipe nozzle and greatly affects the intensity of the axial pressure oscillation. Under the experimental conditions, the optimum Sd values are 0.315 and 0.278 respectively, corresponding to inlet pressures of 10 MPa and 20 MPa. Compared with the default value of 0.3 obtained from air jet experiment, the optimum Sd value at inlet pressure of 10 MPa is a little larger and oppositely a bit smaller at inlet pressure of 20 MPa. Thus, if the inlet pressure is not considered, Sd value of 0.3 is reasonable for determining the chamber length of a self-resonating nozzle for generating effective SRPW.  相似文献   

8.
In this paper, heat transfer characteristics of a turbulent slot jet impinging orthogonally on an isothermal moving hot plate is studied numerically. The governing equations were discretized using the finite volume method and the υ 2f turbulence model was employed for turbulence modeling. The effect of the jet Reynolds number and the plate-to-jet velocity ratio (R) on the Nusselt were investigated. Despite of most previous studies, which have been restricted to R≤2, in the present research higher values of R, also were considered (0≤R≤6). Range of studied jet Reynolds number was between 3000 and 60000. The results indicate that at a fixed plate-to-jet velocity ratio increment of the Reynolds number leads to the enhancement of the average Nusselt number. For each Reynolds number, the average Nusselt number reduces with increasing the plate-to-jet velocity ratio until it becomes minimum at R = 1.25. For R>1.25 trend changes so that these parameters increase. In addition, it was found that only for R>2.5 the average Nusselt number is improved due to the plate motion in comparison with the stationary jet. The results are validated against available experimental data, showing good agreement.  相似文献   

9.
Based on a refined mathematical model, the hydrodynamics of abrasive slurry jet (ASJ) was numerically investigated in consideration of the non-Newtonian rheological properties of the slurry. It is found that adding polymer has significant effects on the jet properties, such as axial velocity and abrasive volume fraction. The coherence length (L c) is proposed to measure the initial region of jet, where external air acts insignificantly on the axial velocity magnitude and thus the averaged kinetic energy is large. In the ASJ flow field, L c is increased after adding polymer additives, while reduced as the operating pressure (P 0) goes up. The prediction to the L c agrees well with the experimental results, with P 0 ranging from 1 to 16 MPa. Accordingly, an empirical formula is presented to describe the relationship between L c and P 0. The distinct characteristics of ASJ with polymer additives together with the verified length model of coherence region provides a qualitative and quantitative basis for the optimization of ASJ machining process, for instance, improving cutting efficiency and precision.  相似文献   

10.
Limited by the factors such as dynamic vibrations, cutting heat, and the use of coolant, it is difficult to measure or evaluate the surface quality in real time. Geometry simulation of the surface topography became the main method used in engineering to estimate and control the quality of the surface machining. This paper proposed a new method for geometry simulation and evaluation of a milled surface. Allowing for the coherency in geometric variations management process, the proposed method is developed based on the skin model of a workpiece. To make the simulated surface topography more realistic, the effects of locating errors, spindle errors, geometrical errors of the machine tool, and cutting tool deflections are included. And a new method is adopted to evaluate the milled surface, in which the roughness of the surface is characterized by the modal coefficients, instead of the R a , R z , and R q values. At the end of this paper, measurements and cutting tests are carried out to validate the proposed method.  相似文献   

11.
A method of rapid X-ray analysis is proposed. The content of the method is that the ratio I d/I i A is measured in two channels of a γ spectrometer, one of which is configured for the diffraction maximum of the determined phase (I d) and the other measures the intensity of the spectral line of secondary element A (I i A ), the atomic number of which is the same as that of the material of the X-ray tube anode. Results of the X-ray analysis of chromite and molybdenum are presented. The test rate was 7 min per test. The maximum deviation from the content of MoS2 was 0.4% in standard specimens with concentrations of 24–29% and that of Fe and Cr2O3 was 0.3% for concentrations of 14–19%.  相似文献   

12.
In this paper, a multi-variable regression model, a back propagation neural network (BPNN) and a radial basis neural network (RBNN) have been utilized to correlate the cutting parameters and the performance while electro-discharge machining (EDM) of SiC/Al composites. The four cutting parameters are peak current (Ip), pulse-on time (Ton), pulse-off time (Toff), and servo voltage (Sv); the performance measures are material remove rate (MRR) and surface roughness (Ra). By testing a large number of BPNN architectures, 4-5-1 and 4-7-1 have been found to be the optimal one for MRR and Ra, respectively; and it can predict them with 10.61 % overall mean prediction error. As for RBNN architectures, it can predict them with 12.77 % overall mean prediction error. The multivariable regression model yields an overall mean prediction error of 13.93 %. All of these three models have been used to study the effect of input parameters on the material remove rate and surface roughness, and finally to optimize them with genetic algorithm (GA) and desirability function. Then, an intelligent optimization system with graphical user interface (GUI) has been built based on these multi-optimization techniques, in which users can obtain the optimized cutting parameters under the desired surface roughness (Ra).  相似文献   

13.
Miniature thermistors are produced from boron-doped synthetic single-crystal diamonds grown under pressure using the thermal gradient method. It is shown that heavily doped diamonds with a boron concentration of 1019 cm?3 or higher are most suitable for this purpose. In the temperature range of 300–700 K, coefficient β = ln(R 1/R 2)/(1/T 1 ? 1/T 2) is 2500 K. The characteristic response time of temperature-sensitive elements based on crystals with dimensions of 1 × 1 × 0.3 mm is ~100 µs; i.e., they can be used in monitoring systems with a response speed of up to 10 kHz.  相似文献   

14.
Machining of hybrid metal matrix composite is difficult as the particulates are abrasive in nature and they behave like a cutting edge during machining resulting in quick tool wear and induces vibration. An attempt was made in this experimental study to evaluate the machining characteristics of hybrid metal matrix composite, and a mathematical model was developed to predict the responses, namely surface finish, intensity of vibration and work-tool interface temperature for known cutting condition while machining was performed in computer numerical control lathe. Design of experiments approach was used to conduct the trials; response surface methodology was employed to formulate a mathematical model. The experimental study inferred that the vibration in V x, V y, and V z were 41.59, 45.17, and 26.45 m/s2, respectively, and surface finish R a, R q, and R z were 1.76, 3.01, and 11.94 μm, respectively, with work-tool interface temperature ‘T’ of 51.74 °C for optimal machining parameters, say, cutting speed at 175 m/min, depth of cut at 0.25 mm and feed rate at 0.1 mm/rev during machining. Experimental results were in close conformity with response surface method overlay plot for responses.  相似文献   

15.
Experimental data are presented for the field dependences of differential magnetic permeability μd (H0) of plastically deformed low-carbon steel-St3 samples both in an unloaded state and under tensile stresses. It is shown that applying tensile stresses drastically changes the shape of curves μd (H0 ) a fact that indicates compensation of internal residual compressive stresses in the samples by external tensile stresses. A new technique is proposed for the experimental determination of the critical fields of displacement of 90-degree domain boundaries based on dependences μd (H0 ). Residual compressive stresses in plastically deformed St3 steel are estimated.  相似文献   

16.
Compacted graphite iron (CGI) is considered as the ideal material to make modern fuel-efficient diesel engine. Due to the vermicular or worm-like graphite distributed among the ferrite/pearlite matrix, CGI behaves better physical and mechanical properties in comparison with gray cast iron (GCI) and spherical graphite spheroidal cast iron (SGI). However, these good properties bring about the machining challenges. So it is important to appropriately select cutting parameters to machine this material with economy and efficiency. The present study investigated the influence of cutting parameters, such as cutting speed V, feed rate f, and exit angle Ψ, on workpiece material removal volume Q and cutting burr height on the entrance side H1 and on the exit side H2 during high-speed milling of CGI by the coated carbide tools. On this basis, the relatively optimum high-speed cutting parameters were selected under the research condition. Cutting tool failure mechanism was also investigated with the aid of scanning electronic microscope (SEM) and energy-dispersive system (EDS) (SUPRA55, Germany) analysis. The results showed that Q, H1, H2, and the type of cutting burr on the exit side of the machined surface could be influenced by the cutting parameters. And the relatively optimum cutting parameters are V = 800 m/min, f = 0.25 mm/rev, and Ψ = 60°. Adhesive wear and thermal cracks which were perpendicular to the cutting edge were common wear mechanisms during the cutting process. However, with an increase in feed rate, mechanical cracks which were parallel to the cutting edge could be found on the flank face of the cutting tool.  相似文献   

17.
In this paper, the influence of the configuration of the geometric structure of the machined surface on the course of the wear process of frictional pairs is discussed. Arrangement of traces of machining determined the level of surface structure isotropy. The characteristics of surface layers are discussed, with particular emphasis on the surface structure isotropy. The results of experimental investigations carried out on the specially designed and made setup are presented. As the measures of the wear process, the following quantities were determined: the mass decrement of samples and changes of the surface roughness parameters, root mean square (RMS) of profile R q and reduced peak height of profile R pk . The results of experimental investigations were registered for structures with different levels of isotropy and, thus, traces of machining. The investigations confirm the influence of the tested factors on the intensity of the wear process.  相似文献   

18.
The identification of targets varies in different surge tests. A multi-color space threshold segmentation and self-learning k-nearest neighbor algorithm (k-NN) for equipment under test status identification was proposed after using feature matching to identify equipment status had to train new patterns every time before testing. First, color space (L*a*b*, hue saturation lightness (HSL), hue saturation value (HSV)) to segment was selected according to the high luminance points ratio and white luminance points ratio of the image. Second, the unknown class sample S r was classified by the k-NN algorithm with training set T z according to the feature vector, which was formed from number of pixels, eccentricity ratio, compactness ratio, and Euler’s numbers. Last, while the classification confidence coefficient equaled k, made S r as one sample of pre-training set T z ′. The training set T z increased to T z+1 by T z ′ if T z ′ was saturated. In nine series of illuminant, indicator light, screen, and disturbances samples (a total of 21600 frames), the algorithm had a 98.65%identification accuracy, also selected five groups of samples to enlarge the training set from T 0 to T 5 by itself.  相似文献   

19.
Aerospace metal honeycomb materials with low stiffness had often the deformation, burr, collapse, and other defects in the mechanical processing. They were attributed to poor fixation method and inapposite cutting force. This paper presented the improvement of fixation way. The hexagonal aluminum honeycomb core material was treated by ice fixation, and the NC milling machine was used for a series of cryogenic machining. Considering the similar structure of fiber-reinforced composite materials, the milling force prediction model of ice fixation aluminum honeycomb was established, considering tool geometry parameters and cutting parameters. Meanwhile, the influence rule on milling force was deduced. The results show that compared with the conventional fixation milling method, the honeycomb processing effect is improved greatly. The machining parameters affect order on milling forces: the cutting depth is the most important, followed by the cutting width, then the spindle speed and the feed. Moreover, too small cutting depth (ap?=?0.5 mm) will cause insufficient cutting force, while ap?>?2 mm with higher force will reduce the processing quality of honeycomb. Simultaneously, the honeycomb orientation (θ) has a great influence on processing quality. Using the model, the predicted and measured error values of the feed and main cutting force are all small in θ?<?90°. But, the rate is 33 and 26% for the main cutting force and feed force error in θ?>?90°, respectively, while they all exhibit the smallest error in θ?=?60°. This bigger error mainly is due to unstable cutting force with obtuse angle. In addition, the tool rake angle has little influence on cutting quality in θ?<?90°, but bigger on that in θ?>?90°. Furthermore, the calculation model successfully conforms to the main deformation mechanism and influences parameters of the cutting force in the milling process, and it can accurately predict the cutting force in θ?<?90° and guide the milling process.  相似文献   

20.
The ball-on-disk friction and wear tests of CN X coatings (CN X /CN X ) were conducted under a nitrogen atmosphere with controlled relative humidity (RH) (3.4–40.0%RH) and oxygen concentration (100–21 × 104 ppm) in this study. We found that the specific wear rate of CN X coating on ball (W b), which could give stable and low friction coefficient (<0.05), was below 3.0 × 10?8 mm3/Nm. Average friction coefficients (µ a) and W b of CN X /CN X increased (µ a: 0.02–0.33, W b: 1.6 × 10?8–2.4 × 10?7 mm3/Nm) with increasing oxygen concentration (230–211,000 ppm) as well as RH (4.7–21.1%RH) under a nitrogen atmosphere. However, the W b remained low value below 2.3 × 10?8 mm3/Nm regardless of oxygen concentration (100–207,000 ppm) of a nitrogen atmosphere (3.4–3.9%RH) when CN X -coated balls were slid against a hydrogenated CN X (CN X :H) coatings (CN X /CN X :H). Besides, the CN X /CN X :H achieved low and stable friction coefficient below 0.05 under a nitrogen atmosphere (10,000 ppmO2) regardless of increasing RH up to 20%RH. Raman analysis indicated that the structure of carbon on the top surface of CN X coating was changed from as-deposited CN X coating in the case of low friction coefficient (<0.05). Furthermore, TOF-SIMS analysis provided the evidence that the carbon derived from CN X -coated disk was considered to diffuse into the ball surface, and it mixed with the carbon derived from CN X -coated ball on the wear scar, which formed the chemically bonded carbon tribo-layer. Low friction coefficient (<0.05) with CN X coatings under a nitrogen atmosphere was achieved due to self-formation of the carbon tribo-layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号