首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
固液两相离心泵内部非定常流动特性研究   总被引:1,自引:0,他引:1  
项佳梁  李昳  唐华 《机电工程》2014,(6):702-706
为研究固液两相流离心泵内部的非定常流动特性,基于滑移网格方法,采用RNGκ-ε湍流模型以及ASMM代数滑移混合物模型,对一台高比转速固液两相离心泵内部流场进行非定常流动的数值模拟,通过分析清水工况数值计算结果、外特性性能实验结果以及固液两相流非定常数值计算结果,获得了非定常条件下固液两相输送离心泵的瞬时外特性曲线和内部流动及磨损规律。研究结果表明:在一个转动周期内,离心泵的扬程、效率和轴功率均呈现正弦波动特征;动静干涉效应使得叶轮出口处的速度和静压分布均呈现周期性波动;模型泵叶轮前后盖板的磨损情况比蜗壳壁面的磨损严重。上述计算结果可为实现高比转速固液两相流离心泵的优化水力设计和减轻磨损提供一定的理论参考。  相似文献   

2.
The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far.There exist two main problems in the operation of the two-phase flow pumps,i.e.,low overall efficiency and severe abrasion.In this study,the three-dimensional,steady,incompressible,and turbulent solid-liquid two-phase flows in a low-specific-speed centrifugal pump are numerically simulated and analyzed by using a computational fluid dynamics(CFD) code based on the mixture model of the two-phase flow and the RNG k-two-equation turbulence model,in which the influences of rotation and curvature are fully taken into account.The coupling between impeller and volute is implemented by means of the frozen rotor method.The simulation results predicted indicate that the solid phase properties in two-phase flow,especially the concentration,the particle diameter and the density,have strong effects on the hydraulic performance of the pump.Both the pump head and the efficiency are reduced with increasing particle diameter or concentration.However,the effect of particle density on the performance is relatively minor.An obvious jet-wake flow structure is presented near the volute tongue and becomes more remarkable with increasing solid phase concentration.The suction side of the blade is subject to much more severe abrasion than the pressure side.The obtained results preliminarily reveal the characteristics of solid-liquid two-phase flow in the centrifugal pump,and are helpful for improvement and empirical correction in the hydraulic design of centrifugal pumps.  相似文献   

3.

Multiphase pump is a cost-effective option for subsea oil and gas field development. The ability to handle different inlet gas volume fractions (GVFs) especially high inlet GVF is critical to the development of pump performance. In this study, the two-phase flow characteristics in normal impeller and split vane impeller at different inlet GVFs were investigated by steady numerical simulations. The gas distribution on blade-to-blade plane and meridional flow channel at different inlet GVFs were analyzed and compared. Gas accumulation area and movement characteristics of the gas-liquid flow in impeller flow passage were also pointed out by unsteady simulations. Experimental results of the pump differential pressure were compared with the numerical simulation results, to validate the accuracy of numerical simulation method. The flow characteristics in pump with modified impeller and its performance at different inlet GVFs were both compared with that of the normal impeller. The steady simulation results of normal impeller in different inlet GVFs show that gas concentrating area in the flow passage increases as inlet GVF grows. The unsteady simulation results indicate that gas pocket firstly occurs on the pressure side of impeller, then moves to the suction side in the middle area of blade and finally transfers to outlet of impeller and disappears. The errors between numerical simulation results and experiment data are below 10 %, which validated the feasibility of the numerical simulation method. Simulation results on the split vane impeller demonstrate that the gas accumulation area in flow passage of the modified impeller is dramatically decreased compared to that of the normal impeller. The performance of the modified impeller is generally better than the normal impeller especially in high inlet GVF conditions.

  相似文献   

4.
针对离心泵内流场特性分析困难的问题,对离心泵流场数值模拟的几何模型建立、模型网格划分和边界条件设定进行了研究,采用计算流体力学方法,获取了在敞水性能条件下离心泵的扬程-流量、效率-流量的变化关系;结合Zwart空化模型,重点对不同有效汽蚀余量时离心泵的空化流场进行了数值模拟,得到了离心泵的内部流线和空泡分布的情况,并与该离心泵机组进行了性能测试实验,最后在此基础之上进行了对比分析。研究结果表明,所采用的数值模拟方法和空化模型合理有效,此结果可为进一步开展离心泵空化监测技术研究提供借鉴。  相似文献   

5.
固液两相流离心泵内颗粒运动规律的数值研究   总被引:1,自引:0,他引:1  
针对分析固相参数对颗粒在流道内运动规律影响的问题,对不同固相参数工况下流道内颗粒运动轨迹、固相速度分布和颗粒雷诺数分布规律进行了研究,对颗粒直径以及颗粒浓度对颗粒运动规律影响进行了归纳。应用RNG k-ε湍流模型以及离散相模型进行了离心泵内部固液两相流场数值模拟。研究结果表明,颗粒与蜗壳碰撞的次数随着直径和颗粒浓度的增大而减少;叶轮流道内,颗粒与叶片发生碰撞的位置在叶片工作面;流道内的固相速度随着直径的增大整体会有减小的趋势;蜗壳和叶轮流道内两相分离严重,两相滑移速度较大。  相似文献   

6.
针对小流量工况下低比转速离心泵内部流动特性问题,通过运用计算流体力学软件FLUENT,并采用RNG k-ε湍流模型和SIMPLE算法,对离心泵内部流场进行了数值模拟。采用3种不同网格数对离心泵模型进行了网格无关性分析以验证提高数值计算的准确性。沿进水管道至其进口端设置了监测点,分析了周向速度和轴向速度,得出了不同工况下发生回流的位置,分析比较了4种流量工况下离心泵内部的流场分布。结果表明:0.7Qd工况下,进水管道和叶轮流道中的流线均比较平滑,离心泵内部流动比较稳定。0.6Qd工况下,叶轮进口和叶轮流道开始产生了漩涡。随着流量的进一步降低,叶轮进口回流强度增大,叶轮流道中的漩涡逐渐向其相邻流道中扩展,离心泵内部的流态十分紊乱。  相似文献   

7.
We performed numerical simulations to study the flow characteristic in a centrifugal pump based on the RANS equations and the RNG k-ε turbulent model. The flow field, including the front and back pump chambers, the impeller wear-ring, the impeller passage, the volute casing, the inlet section and outlet section was calculated to obtain accurate numerical results of fluid flow in a centrifugal pump. The flow characteristic was studied from the internal flow structure in pump chambers, the radial velocity at impeller outlet as well as the pressure inside of the pump, the circumferential velocity and the radial velocity in front pump chamber. The variation of flow parameters in internal flow versus flow rate in the centrifugal pump was analyzed. The results show that the overall performance of the pump is in good agreement with the experimental data. The simulation results show that the distribution of flow field in the front pump chamber is axial asymmetry. The energy dissipation at the impeller outlet is larger than other areas. The distribution of the circumferential velocity and that of radial velocity are similar along the axial direction in the front pump chamber, but the distribution of flow is different along the circumferential and the radial directions. It was also found that the vorticity is large at the impeller inlet compared with other areas.  相似文献   

8.
针对冰浆两相流在离心泵的流动特性问题,基于欧拉法建立冰浆Mixture两相流模型,通过FLUENT软件对冰浆流动特性进行数值模拟,得到了在不同流量工况下的离心泵内部压力场、速度场以及冰晶颗粒分布特性.多次数值计算,获得离心泵在输送含冰率为10%的冰浆时的性能特性曲线,并与该离心泵在输送清水时的性能曲线进行了对比分析.研...  相似文献   

9.
为了进行离心泵的启动特性的试验研究,介绍了流体输送试验台搭建的全过程,便在基于labview基础上进行了离心泵启动特性的研究.最后通过对泵的瞬态特性的理论分析和实验研究建立了瞬态期间泵流量、扬程、功率、转速关系特性曲线,从而为泵压液体发射装置的研制奠定了一定的理论基础.  相似文献   

10.
Tao  Yi  Yuan  Shouqi  Liu  Jianrui  Zhang  Fan  Tao  Jianping 《机械工程学报(英文版)》2016,29(6):1209-1217

As the critical component, the impellers of the slurry pumps usually have blades of a large thickness. The increasing excretion coefficient of the blades affects the flow in the impeller resulting in a relatively higher hydraulic loss, which is rarely reported. In order to investigate the influence of blade thickness on the transient flow characteristics of a centrifugal slurry pump with a semi-open impeller, transient numerical simulations were carried out on six impellers, of which the meridional blade thickness from the leading edge to trailing edge varied from 5-10 mm, 5-15 mm, 5-20 mm, 10-10 mm, 10-15 mm, and 10-20 mm, respectively. Then, two of the six impellers, namely cases 4 and 6, were manufactured and experimentally tested for hydraulic performance to verify the simulation results. Results of these tests agreed reasonably well with those of the numerical simulation. The results demonstrate that when blade thickness increases, pressure fluctuations at the outlet of the impeller become severe. Moreover, the standard deviation of the relative velocity in the middle portion of the suction sides of the blades decreases and that at the outlet of the impeller increases. Thus, the amplitude of the impeller head pulsation for each case increases. Meanwhile, the distribution of the time-averaged relative flow angle becomes less uniform and decreases at the outlet of the impeller. Hence, as the impeller blade thickness increases, the pump head drops rapidly and the maximum efficiency point is offset to a lower flow rate condition. As the thickness of blade trailing edge increases by 10 mm, the head of the pump drops by approximately 5 m, which is approximately 10 % of the original pump head. Futhermore, it is for the first time that the time-averaged relative flow angle is being considered for the analysis of transient flow in centrifugal pump. The presented work could be a useful guideline in engineering practice when designing a centrifugal slurry pump with thick impeller blades.

  相似文献   

11.
An improved method was developed to obtain the complete characteristic of centrifugal pump. The conversion formula of complete characteristics is established based on the normal performance curve. An example was presented to illuminate the new method, and the complete characteristic curves of 14SA-10 centrifugal pump were obtained by the new method. The hydraulic transient of the centrifugal pump failure and start-up was simulated by method of characteristics (MOC), which quote the complete characteristics data. The results show that the inversion method is available to obtain the complete pump characteristic curves provided the normal performance curve. For hydraulic transient simulation, more accurate numerical result can be obtained, if the new model is adopted to convert the experimental normal performance curve to complete characteristics curve of centrifugal pump.  相似文献   

12.
A numerical simulation on suction vortices behavior in a centrifugal pump was carried out to investigate their influence on the internal flow through impellers including formation and shedding of cavitation by using a finite-volume method and k-ω Shear Stress Transport turbulence model. For cavitating flow, a two phase homogeneous cavitation model was used. A full three-dimensional flow in a single-section centrifugal pump consisting of a six blade impeller and shroud ring was computed with structured mesh. A constant suction vortex is imposed as a boundary condition. Vortices behavior was investigated according to the variation of flow rates of two pump systems with and without suction vortices. From the results, suction vortices induced biased flow structure and more cavitations, especially at the low flow rate condition. Complicated internal flow phenomena through impellers such as formation of cavitations, growing and shedding of the vortex, flow separation and flow unsteadiness due to the suction vortices are investigated and discussed.  相似文献   

13.
A partitioned fluid-structure interaction (FSI) solving strategy that depends on problem characteristics is applied to quantitatively obtain the coupling effects of a fluid-structure system in a single-blade centrifugal pump on the unsteady flow. A two-way coupling method is employed to realize strong FSI effects in the calculation procedure. The successful impeller oscillation measurement using two proximity sensors validated the FSI simulation accuracy in a complicated and practical fluid-structure system having a rotating component. The results show that the hydrodynamic force deviation can be observed in the results for the coupled versus uncoupled cases. Additionally, the coupled unsteady pressure is larger than the uncoupled value for every monitoring point at every impeller rotation position. Comparison results for different monitoring points under an overload condition and partial-load condition display the same regularities. To some extent, this interaction mechanism would affect the accuracy and reliability of the unsteady flow and rotor deflection analysis.  相似文献   

14.
螺旋式纸浆离心泵内部流动的数值模拟   总被引:1,自引:0,他引:1  
黄列群  袁静  陈义红  陈炜  吴大转 《机电工程》2007,24(12):50-52,95
为分析螺旋式纸浆离心泵内部流动状态,给优化过流部件结构的优化设计提供基础,采用CFD分析软件Fluent对螺旋式离心泵内部单相流动和固液两相流动进行了数值模拟。给出了螺旋式叶轮建模方法和流场分析方法,分析了泵内流体速度和压力的分布特性,并基于流动模拟结果预测了水力性能,单相输送条件下的计算结果与试验结果取得了较好的一致。通过对一定体积浓度和颗粒粒径下固液两相流的研究计算,分析了螺旋式离心泵叶片表面以及流道内的固液相分布状态,对螺旋式结构的优化具有一定的参考意义。  相似文献   

15.
Cavitation behavior is very important in pumps for long time operation. However, there is difficulty in predicting the cavitation phenomena of pumps by Computational fluid dynamics (CFD). In order to accurately ascertain cavitation behavior, a comparison between CFD and experimental data is a significant and essential process. The purpose of this study is to analyze cavitating behavior in multistage centrifugal pumps numerically and experimentally. For this investigation an experimental set up was used to obtain cavitation performance results. The CFD method was used to investigate the multistage centrifugal pump performance under developed cavitating conditions. The Reynolds-averaged Navier-Stokes (RANS) equations were discretized by the finite volume method. The two-equation SST turbulence model was adopted to account for turbulent flows. Numerical data were validated with experimental data and a good comparison of results was achieved. Numerically, cavitation performances were obtained for different pump stages and the effects on cavitation were described according to different NPSH (Net positive suction head). The occurrence of cavitation was also described according to NPSH3% in the head drop lines and water vapor volume fraction on the impeller blade. The rapid drop in head at low NPSH was captured for different flow conditions. It was found that for stage to stage performance, the head drop changes could be related to losses inside the pump. It was also shown that the simulation results can truly represent the development of the attached sheet cavitation in the impeller.  相似文献   

16.

Numerical simulation and experimental method are combined to investigate the pump inlet and outlet pressure fluctuations, the vibration characteristics and the internal flow instabilities under the unsteady cavitation condition in a centrifugal pump. It is found that the unsteady cavitation starts to generate as the NPSHa is lower than 5.93 m. Apparent asymmetric and uneven cavity volume distribution on each blade and in the impeller can be observed as the NPSHa decreases from 4.39 m to 1.44 m, which includes the cavitation develops from cavitation surge, rotating cavitation to asymmetric cavitation. The flow vortexes in each blade channel are produced in the cavity trailing edges by the shedding and collapse of cavitation, which interfere with each other and aggravate the flow instabilities. The dominant frequencies of the pump inlet and outlet pressure fluctuations are the shaft frequency and blade passing frequency under the unsteady cavitation conditions, respectively. Broadband pulses are obtained from both the pump inlet and outlet pressure pulsations, which results from the random shedding and collapse of unsteady cavitation bubbles. Obvious corresponding relationship between the root mean squares of the vibration measured in different positions and the suction performance curve is found under both the non-cavitation and unsteady cavitation conditions.

  相似文献   

17.
Journal of Mechanical Science and Technology - Clearance flow has great impact on pressure fluctuation of centrifugal pumps. Numerical calculations are performed to study the pressure fluctuation...  相似文献   

18.
The transient behavior of centrifugal pumps during transient operating periods, such as startup and stopping, has drawn more and more attention recently because of urgent needs in engineering. Up to now, almost all the existing studies on this behavior are limited to using water as working fluid. The study on the transient behavior related to solid-liquid two-phase flow has not been seen yet. In order to explore the transient characteristics of a high specific-speed centrifugal pump during startup period delivering the pure water and solid-liquid two-phase flow, the transient flows inside the pump are numerically simulated using the dynamic mesh method. The variable rotational speed and flow rate with time obtained from experiment are best fitted as the function of time, and are written into computational fluid dynamics (CFD) code-FLUENT by using a user defined function. The predicted heads are compared with experimental results when pumping pure water. The results show that the difference in the transient performance during startup period is very obvious between water and solid-liquid two-phase flow during the later stage of startup process. Moreover, the time for the solid-liquid two-phase flow to achieve a stable condition is longer than that for water. The solid-liquid two-phase flow results in a higher impeller shaft power, a larger dynamic reaction force, a more violent fluctuation in pressure and a reduced stable pressure rise comparing with water. The research may be useful to tmderstanding on the transient behavior of a centrifugal pump under a solid-liquid two-phase flow during startup period.  相似文献   

19.
Journal of Mechanical Science and Technology - The Reynolds averaged Navier-Stokes equations and the shear stress transport k-w turbulence model are employed to simulate the centrifugal pump with...  相似文献   

20.
离心泵型线直接影响泵的性能。离心泵的型线即叶片压力面和背面的轮廓线。通过CFD计算软件Fluent,计算得出4种型线叶轮(变角螺旋线、等角对数螺旋线、Bezier曲线、渐开线)的外特性曲线,研究了型线对液固两相流泵性能的影响,得出了叶轮型线为渐开线和Bezier曲线时,有助于提高液固两相流泵的效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号