首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The normal potential of the Ce(IV)/Ce(III) redox couple was determined by square wave voltammetry (SWV) at different temperatures in solutions with a constant ratio [CO32−]/[HCO3] ≈10 for high ionic strengths (3.29 mol dm−3 at 4.39 mol dm−3): varies from 259.5 to 198.0 mV/S.H.E. in the 15-50 °C range. Linear variations were found for versus (RT/F)ln(mCO32−), leading to the stoichiometry, Ce(CO3)68− for the Ce(IV) limiting complex. But the slopes of these linear variations were actually found in the range 1.8-1.9, not exactly 2. This was interpreted as dissociation of the Ce(IV) limiting complex following the reaction: Ce(CO3)56− + CO32− → Ce(CO3)68− and as dissociation of the Ce(III) limiting complex following the reaction: Ce(CO3)33− + CO32− → Ce(CO3)45−; for which maximum possible values of log10 KIV,6 and log10 KIII,4 were estimated via fitting in the 15-50 °C temperature range (log10 KIV,6 = 0.42 (0.97) and log10 KIII,4 = 0.88 (7.00) at 15 °C (50 °C). The normal potential was found to decrease linearly with T, these variations correspond to , with T0 = 298.15 K and . The apparent diffusion coefficient of Ce(IV) was determined by direct current polarography (DCP), cyclic voltammetry (CV) and square wave voltammetry. It was found to depend on the ionic strength and to be proportional to T.  相似文献   

3.
The electrochemical reduction of peroxycitric acid (PCA) coexisting with citric acid and hydrogen peroxide (H2O2) in the equilibrium mixture was extensively studied at a gold electrode in acetate buffer solutions containing 0.1 M Na2SO4 (pH 2.0-6.0) using cyclic and hydrodynamic voltammetric, and hydrodynamic chronocoulometric measurements. The reduction of PCA was characterized to be an irreversible, diffusion-controlled process, and the cyclic voltammetric reduction peak potential () was found to be more positive by ca. 1.0 V than that of the coexisting H2O2, e.g., the values obtained at 0.1 V s−1 for PCA and H2O2 were 0.35 and −0.35 V, respectively, vs. Ag|AgCl|KCl (sat.) at pH 3.3. The of PCA was found to depend on pH, i.e., at pH > 4.5, the plot of vs. pH gave the slope (−64 mV decade−1) which is close to the theoretical value (−59 mV decade−1) for an electrode process involving the equal number of electron and proton in the rate-determining step, while at pH < 4.5, the was almost independent of pH. The relevant electrochemical parameters, Tafel slope, number of electrons, formal potential (E0′), cathodic transfer coefficient and standard heterogeneous rate constant (k0′) for the reduction of PCA and the diffusion coefficient of PCA were determined to be ca. 100 mV decade−1, 2, 1.53 V (at pH 2.6), 0.29, 1.2 × 10−12 cm s−1 and 0.29 × 10−5 cm2 s−1, respectively, and except for E0′, the obtained values were almost independent of the solution pH. The overall mechanism of the reduction of PCA was discussed.  相似文献   

4.
5.
6.
《Polymer》2005,46(25):11322-11329
Poly(3-mesityl-2-hydroxypropyl methacrylate-co-N-vinyl-2-pyrrolidone) P(MHPMA-co-VP) was synthesized in 1, 4-dioxane solution using benzoyl peroxide (BPO) as initiator at 60 °C. The copolymer was characterized by 1H 13C NMR, FT-IR, DSC, TGA, size exclusion chromatography analysis (SEC) and elemental analysis techniques. According to SEC, the number-average molecular weight (Mn), weight-average molecular weight (Mw) and polydispersity index (PDI) values of PMHPMA-co-VP were found to be 58,000, 481,000 g/mol and 8.26, respectively. According to TGA, carbonaceous residue value of PMHPMA-co-VP was found to be 6% at 500 °C. Also, some thermodynamic properties of PMHPMA-co-VP such as the adsorption enthalpy, ΔHa, molar evaporation enthalpy, ΔHv, the sorption enthalpy, , sorption free energy, , sorption entropy, , the partial molar free energy, , the partial molar heat of mixing, , at infinite dilution was determined for the interactions of PMHPMA-co-VP with selected alcohols and alkanes by inverse gas chromatography (IGC) method in the temperature range of 323-463 K. According to the specific retention volumes, , the weight fraction activity coefficients of solute probes at infinite dilution, , and Flory-Huggins interaction parameters, between PMHPMA-co-VP-solvents were determined in 413-453 K. According to and , selected alcohols and alkanes were found to be non-solvent for PMHPMA-co-VP at 413-453 K. The glass transition temperature, Tg, of the PMHPMA-co-VP found to be 370 and 363 K, respectively, by IGC and DSC techniques, respectively.  相似文献   

7.
8.
You-Jun Fan 《Electrochimica acta》2004,49(26):4659-4666
The dissociative adsorption of ethylene glycol (EG) on Pt(1 0 0) electrode surface cooled in air after flame annealing was investigated by using programmed potential step technique and in situ FTIR spectroscopy. The stable adsorbates derived from EG dissociative adsorption on Pt(1 0 0) were determined by in situ FTIR spectroscopy as linear- and bridge-bonded CO. The quantitative results demonstrated that the average rate of dissociative adsorption of EG on Pt(1 0 0) surface varies with electrode potential, yielding a volcano-type distribution with a maximum value located near 0.10 V versus SCE. From the variation of the quantity of CO adsorbates generated in EG dissociative adsorption with the adsorption time tad, the initial rate (νi) of this surface reaction was evaluated quantitatively. The maximum value of νi has been determined to be 2.64 × 10−11 mol cm−2 s−1 in a solution containing 2 × 10−3 mol L−1 EG. The influence of the surface structure of Pt(1 0 0) electrode obtained by different pretreatment as well as of the specific adsorption of (bi)sulfate anions on the kinetics of EG dissociative adsorption has been also investigated and discussed. In comparison with a Pt(1 0 0) surface cooled in air atmosphere after flame treatment, the Pt(1 0 0) surface cooled in an Ar-H2 stream or subjected to a treatment of fast potential cycling decreased significantly the initial rate νi of EG dissociative adsorption. Similar effect was also observed for the specific adsorption of (bi)sulfate anions. However, the maximum attainable coverage () of adsorbates derived from EG dissociative adsorption is not affected either by the surface structure of Pt(1 0 0) or by (bi)sulfate anions adsorption.  相似文献   

9.
The bulk thick films of high-molecular-weight atactic polystyrene (PS) were brought into contact at a small contact pressure ≤0.2 MPa at a constant healing temperature Th below the calorimetric glass transition temperature of the bulk . Fracture energy G and fracture stress σ of the auto-adhesive joints PS-PS were measured at ambient temperature in the T-peel test and the lap-shear joint geometry, respectively. In the framework of the diffusion controlled mechanism of the development of these two mechanical properties suggesting their evolution as and (th is the healing time), and as G∝1/Th and σ∝1/Th, a linear relationship between G1/2 and σ, valid over a temperature range of , has been found. The penetration depth of 0.5 nm corresponding to the value of G calculated using the measured value of σ developed at for 24 h was reasonably smaller than the thickness of the surface mobile layer of 1 nm predicted by Wool's rigidity percolation theory for thick bulk PS films. The feasibility of a full healing of polymer-polymer interfaces below has been discussed. The dependence of an apparent activation energy characterising the process of segmental motions at PS surfaces and interfaces on the approach and the physical property chosen for its calculation has been analysed.  相似文献   

10.
11.
Synthetic calix[4]arene-crown ionophores for selective Na+ (ionophore L1) and Cs+-ions (ionophore L2) recognition find application in ion-selective membrane electrodes (ISE) for analytical purpose. Selectivity coefficients for the electrodes with compounds L1 and L2 are  = −2.6 and  = −2.4, respectively. Electrodes of two different construction: all-solid-state (ASS) (with conducting polymer layer on glassy carbon or platinum as ion-to-electron transducer) and conventional ion-selective electrode (ISE) (with liquid electrolyte and Ag/AgCl) are presented and their properties and lifetime are being compared. Resistance of PVC membrane with ionophores L1 and L2 were within the range 0.15-1.4 MΩ depending on the type of the outer electrolyte and its concentration. Conductivity of the membranes was in the range 0.7 × 10−8 to 6 × 10−8 Ω−1 cm−1. Warburg coefficients σ were within 0.16 × 104 to 12.7 × 104 Ω s−1/2, dielectric constant values ? were in a range 28-60 depending mainly on the type of plasticizer.  相似文献   

12.
Varun Penmatsa 《Carbon》2010,48(14):4109-6600
A technique to fabricate porous carbon micropillars using a block copolymer, F127, as porogen is described. In this process, negative tone photoresist (i.e. SU-8) mixed with F127 was photopatterned and carbonized under inert atmosphere. The thermal behavior of the photoresist precursor (F127 + SU-8) during carbonization process was characterized using differential scanning calorimetry and thermogravimetric analysis. Texture analysis on the carbon surface showed a mesoporous feature distribution. Electrochemical characterization based on the reaction of redox couple was utilized to study the change in the effective surface area (Aeff) of the porous carbon electrodes with different weight percentages of F127 in SU-8. These results indicated that porous carbon thin film electrodes derived from 10% F127 mixed in SU-8 had an Aeff 185% compared to the conventional photoresist derived carbon electrode. This fabrication approach can be employed to produce reproducible high aspect ratio carbon microelectrodes with different shapes for various electrochemical devices.  相似文献   

13.
An experimental investigation is reported on the effect of fiber length distribution on gas holdup in a cocurrent air-water-fiber bubble column. Different combinations of 1 and 3 mm Rayon fibers are used to simulate different fiber length distributions. At a constant total fiber mass fraction, gas holdup generally decreases with increasing mass fraction of the 3 mm Rayon fiber while other conditions remain constant. Crowding factors estimated using four different methods (Nc=Nc,A, , Nc,L, and Nc,M) and the parameters and are tested on their performance to quantify the overall effects of fiber mass fraction and fiber length and its distribution on gas holdup. and provide the best characterization of the fiber effects on gas holdup in the cocurrent air-water-fiber bubble column. The crowding factor estimated using the model-based average fiber length (Nc,M) also provides a good characterization and is better than the other crowding factor definitions.  相似文献   

14.
A third-generation biosensor based on HRP and a Sonogel-Carbon electrode has been fabricated with the aim of monitoring hydrogen peroxide in aqueous media via a direct electron transfer process. The redox activity of native HRP, typical of thin-layer electrochemistry, was observed. The charge coefficient transfer, α, and the heterogeneous electron transfer rate constant, ks, were calculated to be 0.51 ± 0.04 and 1.29 ± 0.04 s−1, respectively. Topographic study by atomic force microscopy (AFM) shows that the enzyme may have been introduced inside the ionic cluster of the Nafion. The immobilized HRP exhibited excellent electrocatalytical response to the reduction of H2O2 and preserved its native state after the immobilization stage. Several important experimental variables were optimized. The resulting biosensor showed a linear response to H2O2 over a concentration range from 4 to 100 μM, with a sensitivity of 12.8 nA/μM cm−2 and a detection limit of 1.6 μM, calculated as (3 S.D./sensitivity). The apparent Michaelis-Menten constant was calculated to be 0.295 ± 0.020 mM. The biosensor showed high sensitivity as well as good stability and reproducibility. The performance of the biosensor was evaluated with respect to four possible interferences.  相似文献   

15.
16.
The self-diffusion coefficients of water and ions were used to study the physical (tortuosity) and electrostatic interactions of counterions in poly(perfluorosulfonic) acid membrane (Nafion-117) matrix. The self-diffusion coefficients of water were measured in the water swollen Nafion-117 membrane with Zn2+, Ca2+, Sr2+, and Fe2+ counterions by analyzing the experimental exchange rates between tritium tagged water (HTO) in membrane and equilibrating water. In order to study the effects of equilibrating solution, the HTO-desorption rate profiles between the membrane samples in H+ or Cs+ forms and equilibrating solution containing CsCl or HCl (0.25 mol/L) were measured. It was observed that the HTO-exchange rate profile was slower in case of membrane sample in Cs+-from equilibrated with salt/acid solution than that equilibrated with deionized water in same ionic form. However, HTO-exchange rate profile did not alter in case of H+-form of membrane on equilibration with salt or acid solution. The variation of ln  with polymer volume function Vp/(1 − Vp), where Vp is polymer volume fraction, indicated that: (i) in the membrane with multivalent counterions was lower than that reported for membrane with monovalent counterions at same Vp, and (ii) the linear trends observed in variation of ln  with Vp/(1 − Vp) for multivalent and monovalent counterions were significantly different. The values of in membrane normalized with at Vp = 0 were taken as an estimate of the tortuosity factor for self-diffusion of ions in the membrane matrix. The self-diffusion coefficients of ions reported in the literature along with tortuosity factor obtained from in the corresponding ionic forms of the membrane were analyzed to obtain the charge (Zi) independent electrostatic interaction parameter g(φ) of monovalent and divalent ions in the membrane. This analysis indicated that g(φ) also vary exponentially as a function of Vp/(1 − Vp) irrespective of charge on counterions. In order to study the influence of Vp on diffusional transport rates of Na+ and Cs+ ions in membrane, a permeation experiment was carried out using H+-form of membrane having high water volume fraction. The diffusional transport rates of Cs+ and Na+ in H+-form of membrane were found to be similar indicating that the water volume fraction in membrane has strong influence on the parameters that govern the diffusion across the Nafion-117 membrane.  相似文献   

17.
18.
In this paper, we combined FTIR spectroscopy and COad stripping voltammetry to investigate COad adsorption and electrooxidation on Pt-Ru/C nanoparticles. The Pt:Ru elemental composition and the metal loading were determined by ICP-AES. The X-ray diffraction patterns of the Pt-Ru/C indicated formation of a Pt-Ru (fcc) alloy. HREM images revealed an increase in the fraction of agglomerated Pt-Ru/C particles with increasing the metal loading and showed that agglomerated Pt-Ru/C nanoparticles present structural defects such as twins or grain boundaries. In addition, isolated Pt-Ru/C nanoparticles have similar mean particle size (ca. 2.5 nm) and particle size distributions whatever the metal loading. Therefore, we could determine precisely the effect of particle agglomeration on the COad vibrational properties and electrooxidation kinetics. FTIR measurements revealed a main COad stretching band at ca. , which we ascribed to a-top COad on Pt domains electronically modified by the presence of Ru. As the metal loading increased, the position of this band was blue shifted by ca. 5 cm−1 and a shoulder around 2005 cm−1 developed, which was ascribed to a-top COad on Ru domains. The reason for this was suggested to be the increasing size of Ru domains on agglomerated Pt-Ru/C particles, which lifts dipole-dipole coupling and allows two vibrational features to be observed (COad/Ru, COad/Pt). This is evidence that FTIR spectroscopy can be used to probe small chemical fluctuations of the Pt-Ru/C surface. Finally, we comment on the COad electrooxidation kinetics. We observed that COad was converted more easily into CO2 as the metal loading, i.e. the fraction of agglomerated Pt-Ru/C nanoparticles, increased.  相似文献   

19.
The electroreduction of the peroxodisulfate anion on the electrochemically polished (EP) Cd(0 0 0 1) plane has been studied by cyclic voltammetry and rotating disc electrode methods. The rate constant of the heterogeneous electroreduction reaction of the S2O82− anion on the EP Cd(0 0 0 1) plane dependent on electrode polarisation and base electrolyte concentration has been established. The values of apparent transfer coefficient αapp corrected for the double layer effect, noticeably lower than 0.5 for the EP Cd(0 0 0 1) plane, only very weakly depend on the electrode potential but noticeably on the electrolyte concentration, decreasing with the base electrolyte concentration. The very low values of the apparent charge transfer coefficient show that the activationless charge transfer mechanism is probably valid for EP aqueous solution interface in a good agreement with the theoretical models for the high hydrogen overvoltage metals based on the diabatic charge transfer mechanism from the metal to an ion.  相似文献   

20.
Buckley Crist 《Polymer》2005,46(20):8745-8751
Melt crystallization of random copolymers leads to solids with crystalline fraction wc and final melting temperature that are substantially below the predictions of Flory's equilibrium crystallization theory. Model ethylene/butene random copolymers, when crystallized as multilayer films by rapid solvent evaporation, exhibit increased wc (50% relative) and (4 K) compared to melt crystallized values. For a copolymer with 0.92 mol fraction ethylene, the density-derived crystallinity wc=0.6 is the same as that from Flory's theory, although the maximum observable crystal thickness from remains about 25% of the theory value. These effects are seen because crystallization from solution occurs without many of the constraints to segment dynamics that limit crystalline fraction during melt crystallization. Crystal thickness is dominated by secondary nucleation barriers in both melt and solution. Chain or sequence folding is much more regular in the solution crystallized material, and amorphous layer thickness is reduced from about 8 nm to 3 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号