首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dense Ce0.8Gd0.2O2−δ was sintered by pulsed current activated sintering (PCAS) within 6 min from Ce0.8Gd0.2O2−δ nanopowder prepared by co-precipitation method. Sintering was accomplished under the combined effects of a pulsed current and mechanical pressure. Highly dense Ce0.8Gd0.2O2−δ with relative density of up to 96.3% was produced under simultaneous application of an 80-MPa pressure and the pulsed current. The effects of Fe2O3 additions on the sintering behavior, ionic conductivities, and mechanical properties of the Ce0.8Gd0.2O2−δ were investigated.  相似文献   

2.
3.
The influence of Ta concentration on the stability of BaCe0.9−xTaxY0.1O3−δ (where x=0.01, 0.03 and 0.05) powders and sintered samples in CO2, their microstructure and electrical properties were investigated. The ceramic powders were synthesized by the method of solid state reaction, uniaxially pressed and sintered at 1550 °C to form dense electrolyte pellets. A significant stability in CO2 indicated by the X-ray analysis performed was observed for the samples with x≥0.03. The electrical conductivities determined by impedance measurements in the temperature range of 550–750 °C and in various atmospheres (dry argon, wet argon and wet hydrogen) increased with temperature but decreased with Ta concentration. The highest conductivities were observed in the wet hydrogen atmosphere, followed by those in wet argon, while the lowest were obtained in the dry argon atmosphere for each dopant concentration. The composition with Ta content of 3 mol% showed satisfactory characteristics: good resistance to CO2 in extreme testing conditions, while a somewhat reduced electrical conductivity is still comparable with that of BaCe0.9Y0.1O3−δ.  相似文献   

4.
One of the major challenges in developing proton conducting CaZr0.9In0.1O3−δ is to achieve a high densification at low sintering temperature. In this work, an auto-ignition combustion process was first used to synthesize CaZr0.9In0.1O3−δ powders aiming to improve its sinterability. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and dilatometry measurement. The results indicate that a calcination temperature of 1000 °C is sufficient to form the CaZr0.9In0.1O3−δ phase. The as-obtained powders are fine, homogeneous and well crystallized, which strongly improves the sintering properties. Dense CaZr0.9In0.1O3−δ ceramics with uniform grain size were obtained by sintering at 1350 °C, which is much lower than that required for the conventional solid state reaction method. In addition, the electrical properties of CaZr0.9In0.1O3−δ ceramics were studied by electrochemical impedance spectroscopy.  相似文献   

5.
In this paper effects of Ca and Mg substitution on oxygen sensing properties of hot spot based Eu123 rods are reported. Eu1−xCaxBa2Cu3O7−δ (x=0.2–0.5) and Eu1−yMgyBa2Cu3O7−δ (y=0.2–0.5) ceramics were synthesized from oxide powders using the standard solid state method and fabricated into short rods. For Ca-substituted rods, after appearance of a visible hot spot, a constant current plateau in IV curve was formed. The output current response of the rod in periodically changing pO2 between 20% and 100% showed improved stability and reproducibility for x=0.4 compared to x=0.2. Improved oxygen absorption and desorption time was observed for x=0.4 compared to previously reported unsubstituted rod. On the other hand, for Mg-substituted rods the IV behavior after formation of hot spot showed a negative slope. Faster absorption time of 3.0 s and desorption time of 6.9 s were observed for y=0.4 compared to y=0.2. The improved output current stability, reproducibility and response time is suggested to be due to changes in oxygen activation energy and increased hole concentration as a result of Ca2+/Mg2+substitutions. The Mg-substituted rods showed better performance compared to Ca-substituted rods possibly due to higher porosity and vacancy concentration.  相似文献   

6.
La1−xCaxFeO3−δ solid solutions (x=0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) were investigated. The samples were prepared by the polymerizable complex route and characterized by X-ray diffraction and complex impedance spectroscopy techniques. Results reveal the formation of a single perovskite phase for the La1−xCaxFeO3−δ (0≤x≤0.5) compositions. However, the La0.4Ca0.6FeO3−δ sample is a mixture of many phases: perovskite, calcium ferrite and iron oxide. The unsubstituted lanthanum ferrite oxide, as well as the substituted samples, exhibits an orthorhombic symmetry. The direct current conductivity analyses reveal a typical negative temperature coefficient of the resistance behaviour for all the samples. The incorporation of calcium into the lanthanum ferrite lattice results in a significant improvement of the direct current conductivity. In fact, La0.8Ca0.2FeO3−δ oxide shows the optimal conduction value. For all the studied compositions, a change in the activation energy is highlighted around 440 °C. This behaviour is attributed to the antiferromagnetic to paramagnetic transition of lanthanum ferrite. As for the alternating current conductivity, it obeys the Jonsher's power law. The correlated barrier hopping model is proposed to describe the transport mechanism in the studied matrix.  相似文献   

7.
The value of critical current density at 77 K in “zero” applied field (Jc) characterizing the superconducting state for YBa2Cu3O7−δ ceramics is closely related to the microstructure.The interrelationships between the microstructural factors such as pore volume fraction, oxygen content, average grain size, are complex. However, these factors also influence the normal state resistivity measured at room temperature (ρ300). We demonstrate how the current carrying cross section influences Jc and ρ300 in a similar way. Data, reported for two classes of YBa2Cu3O7−δ: small grain porous ceramics and larger-grain denser ceramics, reveal an approximate linear relation between ρ300 K and Jc. Extrapolation of this relation to a fully dense small grain YBa2Cu3O7−δ ceramic yields values of ρ300 = 0.4 mΩ cm and Jc = 103 A cm−2.  相似文献   

8.
Novel dense perovskite BaBi0.05Sc0.1Co0.85O3−δ (BBSC) membranes showed promising flux performance to separate oxygen from air. The oxygen transport through BBSC in discs and hollow fibres geometry were modelled as a function of oxygen partial pressure in the permeate side and temperature using simple correlations. The oxygen diffusion (DO) and surface exchange (kS) coefficients and also the characteristic thickness (LC) were extracted from the series of flux data based on disc membranes. Employing the obtained oxygen diffusion coefficient, the surface exchange coefficients (kf and kr) for the hollow fibre geometry can then be obtained from another tubular correlation by fitting with flux data based on hollow fibre membranes. The physical importance of the parameters (i.e. DO, kS, LC, kf and kr) was discussed. The effects of controllable variables, i.e. temperature and oxygen partial pressure, in the permeate side onto oxygen flux performance were also elaborated.  相似文献   

9.
Sr(Ce0.6Zr0.4)0.9Y0.1O3 − δ was prepared by a wet chemical route and the stages of its formation, as well as the characterization of the resulting compounds were carried out using TG–DTA, XRD, TEM, SEM and EPMA techniques. Experimental results indicate that a calcination temperature of 900–1100 °C, which is much lower than that for the conventional solid state reaction process, is sufficient to the formation of single perovskite phase. Sr(Ce0.6Zr0.4)0.9Y0.1O3 − δ powders obtained are fine, narrowly distributed and well crystallized. This strongly improves the sinter properties and the formation of a dense Sr(Ce0.6Zr0.4)0.9Y0.1O3 − δ. Sintered at T ≥ 1350 °C, samples with density ≥97.16% of the theoretical could be obtained. In addition, the proton conductivities of Sr(Ce0.6Zr0.4)0.9Y0.1O3 − δ ceramic were measured by impedance spectroscopy in 5% H2/Ar and the evolution of the spectra with increasing temperature was analyzed.  相似文献   

10.
Ba1−xPrxCo1−yFeyO3−δ (BPCF) perovskite oxides have been synthesized and investigated as cathode materials for low temperature solid oxide fuel cells (LT-SOFCs). Compared with those of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) and Sm0.5Sr0.5CoO3 (SSCo) cathode materials, BPCF has a lower polarization resistance at decreased temperatures. In particular, Ba0.5Pr0.5Co0.8Fe0.2O3−δ showed the lowest polarization loss among the different compositions as a cathode material for LT-SOFCs. The area specific resistance (ASR) of Ba0.5Pr0.5Co0.8Fe0.2O3−δ as a cathode material is 0.70 and 0.185 Ω cm2 at 500 °C and 550 °C, respectively. The maximum power density of the cell BPCF/SDC/Ni-SDC with humidified hydrogen as fuel and air as oxidant reaches 860 mW cm−2 at 650 °C.  相似文献   

11.
Strontium and magnesium doped lanthanum gallate (La0.9Sr0.1Ga0.8Mg0.2O3−δ), known as LSGM, was first prepared via ethylene glycol method. This route of preparation showed improved electrical conductivity, better surface area and high density. X-ray diffraction patterns of LSGM sintered at different temperatures indicated that pure LSGM phase was formed after sintering at 1400 °C. X-ray Rietveld refinement confirmed the formation of pure perovskite orthorhombic phase of the LSGM. The sintered sample showed 99% relative density. Scanning electron microscopic study of LSGM also depicted fairly densed grain morphology. X-ray photoelectron spectroscopy measurement confirmed the stability of the sintered sample in air and the existence of constituent elements in their characteristic valence states. A surface without porosity was observed in BET measurement. Average thermal expansion coefficient was found to be 9.78×10−6/°C in the measured temperature range (RT–1000 °C). The frequency dependent electrical conductivity of the sample was measured in the temperature range 400–800 °C. Total electrical conductivity of the LSGM pellet was found to be 0.056 S cm−1 at 800 °C.  相似文献   

12.
Undoped and acceptor doped cerium dioxide is known to exhibit non-stoichiometry induced chemical expansion at elevated temperatures and reducing environments with impact on the mechanical integrity of solid oxide fuel cells and permeation membranes. In this paper, the chemical expansion of Pr0.1Ce0.9O2−δ is measured and analyzed with respect to its defect equilibria and the chemical coefficient of expansion, analogous to thermal coefficient of expansion, is extracted. The addition of Pr to CeO2 leads to major deviations from stoichiometry, and correspondingly to large chemical expansions, under readily accessible experimental conditions (e.g. in air at elevated temperatures). Pr0.1Ce0.9O2−δ, therefore, serves as a model system for studying chemical expansion in ceria-based solid solutions in order to predict the conditions in which they exhibit suppressed chemical expansion.  相似文献   

13.
用Pechini法制备的Sm0.15Gd0.05Ce0.8O1.9在600℃时,立方萤石相己基本形成;在Pechini法的基础上外加微波场作用,制备的粉体粒径分布在14~16 nm之间,经1400℃烧结,烧结致密度达到96.5%,1600℃焙烧4h时,样品的烧结致密度达到99.3%。采用Pechini法(R=1.5)制备的粉体,经1400℃烧结其烧结致密度为理论密度的87%(1600℃时为96.2%)。采用外加微波场作用下制备的粉体具有更小的粒径和高的比表面积,其烧结驱动力要大于热场下Pechini法制备的粉体,能够在相对较低的烧结温度下获得很高的烧结致密度。  相似文献   

14.
Dense ceramic membranes are usually hybridized with an electronically conductive metallic phase to enhance their hydrogen permeation fluxes, thereby increasing the hydrogen-production efficiency of hydrogen separation membranes. Herein, the hydrogen-separation properties of membranes fabricated from cermets containing BaCe0.9Y0.1O3−δ (BCY) as the proton-conducting ceramic phase and Ni as the electronic-conducting metal phase were investigated with respect to the compositions of the Ni–BCY mixture. Because the hydrogen permeability of a cermet membrane is seriously affected by microstructural parameters such as grain size and homogeneity of the cermet mixture used to fabricate it, we tried to optimize the microstructures and compositions of the Ni–BCY cermets by controlling their fabrication conditions. A high-energy milling process was employed to fabricate fine-grained, dense membranes that exhibited high levels of mixing homogeneity. From the adjustment of composition and microstructure of Ni–BCY composites, the hydrogen permeability of Ni–BCY cermet membranes can be significantly increased so that hydrogen fluxes of ~0.76 cm3/(min cm2) at 800 °C can be achieved.  相似文献   

15.
The poor activity of cathode materials for electrochemical reduction of oxygen in intermediate and low temperature regime (<700 °C) is a key obstacle to reduced-temperature operation of solid oxide fuel cells (SOFCs). In our previous work, the direct methane fuel cell exhibits approximately 1 W cm−2 at 650 °C in hydrogen atmosphere without any functional layers when the electrospun LSCF–GDC cathode was applied into the La2Sn2O7–Ni–GDC anode-supported cell, which is approximately two times higher performance than 0.45 W cm−2 of the cell with the conventional LSCF–GDC cathode. For detailed analysis of the fibrous cathode, the symmetrical cells with the electrospun and conventional LSCF–GDC cathode are fabricated, and then their electrochemical characteristics are measured by using electrochemical impedance spectroscopy (EIS). Each resistance contribution is determined by equivalent circuit consisting of a series resistance (Rs) and three arcs to describe the polarization resistance of the cathode. Total polarization resistance of the electrospun LSCF–GDC cathode is approximately two times lower than that of the conventional LSCF–GDC cathode at 650 °C, which is attributed to fibrous microstructures and large amount of pores in 100–200 nm. The results correspond to the difference in the cell performances obtained from our previous work.  相似文献   

16.
This study reports the successful preparation of single-phase perovskite (Ba0.5Sr0.5)0.8La0.2Fe1−xMnxO3−δ (x = 0-0.2) by the citrate-EDTA complexing method. The crystal structure, thermal gravity analysis, coefficient of thermal expansion, electrical conductivity, and electrochemical performance of (Ba0.5Sr0.5)0.8La0.2Fe1−xMnxO3−δ were investigated to determine its suitability as a cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The lattice parameter a of (Ba0.5Sr0.5)0.8La0.2Fe1−xMnxO3−δ decreases as the amount of Mn doping increases. The coefficients of thermal expansion of the samples are in the range of 21.6-25.9 × 10−6 K−1 and show an abnormal expansion at around 400 °C associated with the loss of lattice oxygen. The electrical conductivity of the (Ba0.5Sr0.5)0.8La0.2Fe1−xMnxO3−δ samples decreases as the amount of Mn-doping increases. The electrical conductivity of the samples reaches a maximum value at around 400 °C and then decreases as the temperature increases. The charge transfer resistance, diffusion resistance and total resistance of a (Ba0.5Sr0.5)0.8La0.2Fe0.8Mn0.15O3-δ-Ce0.8Sm0.2O1.9 composite cathode electrode at 800 °C are 0.11 Ω cm2, 0.24 Ω cm2 and 0.35 Ω cm2, respectively.  相似文献   

17.
刘婷婷  周德凤  范伟艳  赵桂春  孟健 《应用化工》2011,40(2):195-198,202
采用水热法合成了花状Ce0.9Gd0.1O1.95纳米粉,通过X射线衍射、红外光谱、场发射扫描电子显微镜测试手段对产物进行了表征,探讨了其生长机制,以亚甲基蓝的光降解为模型反应,研究其光催化性能。结果表明,以甲酸为介质,110℃的水热条件下合成的纳米Ce0.9Gd0.1O1.95颗粒经800℃煅烧后具有萤石结构,平均晶粒尺寸为21.6 nm,花状形貌;由于Gd3+的掺杂,纳米Ce0.9Gd0.1O1.95对亚甲基蓝紫外光催化性能强于未掺杂的CeO2。该合成方法简单易行,对纳米Ce0.9Gd0.1O1.95的形貌控制起到了启示作用,所得的花状纳米Ce0.9Gd0.1O1.95在光催化领域有着重要应用价值。  相似文献   

18.
Nano-sized Ba1−xLaxTiO3 (0.00 ≤ x ≤ 0.14) powders were prepared by a coprecipitation method and calcined at 850 °C in air. The corresponding ceramics were obtained by Spark Plasma Sintering (SPS) at 1050 °C. These ceramics are oxygen deficient and are marked as Ba1−xLaxTiO3−δ. Both powders and ceramics were characterized by X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The effect of lanthanum concentration on the densification behavior, on the structure and the microstructure of the oxides was investigated. Average grain sizes are comprised between 54 (3) nm and 27 (2) nm for powders, and 330 (11) nm and 36 (1) nm for ceramics according to the La-doping level. Powders crystallize in the cubic (or pseudo-cubic) perovskite phase. The structure of ceramics consists in a mixture of cubic (or pseudo-cubic) and tetragonal perovskite type phases. As the lanthanum content increases, the tetragonality of the samples decreases, as well as the grain size.  相似文献   

19.
In an effort to develop alternative anode materials based on mixed conducting ceramics capable of offering high mixed ionic-electronic conductivity, stability to redox cycles, and limited activity for carbon formation to Ni/YSZ cermets, CaMoO3 ceramics for application as a solid oxide fuel cell (SOFC) anode material were synthesized as a function of temperature and oxygen partial pressure (pO2). CaMoO3 perovskite-dominant powders were obtained by reducing the CaMoO4 showing a structure of orthorhombic unit cells with the following lattice parameters: a = 5.45 Å, b = 5.58 Å, and c = 7.78 Å. The equilibrium total conductivity of CaMoO3, measured by DC 4-probe method in 5% H2/balance N2 condition (pO2 ≈ 10−22 atm) at various temperatures, decreased with increasing temperature below 400 °C, indicating metallic properties with an activation energy of 0.028 eV. Between 400 °C and 600 °C, the equilibrium total conductivity slightly increased, and finally sharply decreased at 800 °C. The Mo metal precipitation during measurement was thermodynamically proved by the predominance diagram for CaMoO3. Finally, a fuel cell with CaMoO3 anode exhibited poor performance with a maximum power density of only 14 mW/cm2 at 900 °C, suggesting that further research is needed to enhance the ionic conductivity and thus improve the catalytic properties.  相似文献   

20.
This study investigates Sm0.5Sr0.5CoO3−δ (SSC)-Ce0.8Sm0.2O1.9 (SDC) composite cathodes with a gradual change in composition from electrolyte to the cathode in an attempt to discover a potential approach applicable to solid oxide fuel cells (SOFCs). The gradual change in composition from electrolyte to cathode shows the decline in charge transfer resistance (R2) and gas phase diffusion resistance (R3). Because the value of R3 is always larger than R2 and R3 significantly dominates the total cathode polarization resistance (RP) at temperatures within the range of 750-850 °C, i.e., in this temperature range, the rate-determining step is dominated by the diffusion or dissociative adsorption of oxygen. The functionally gradient cathode with a graded interface between cathode and electrolyte reveals both a higher exchange current density (i0) and a lower activation energy for oxygen reduction reaction (ORR), which suggests that the ORR kinetics can be improved by using the configuration of a functionally gradient cathode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号