首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive electrogenerated chemiluminescence (ECL) detection of DNA hybridization, based on tris(2,2′-bipyridyl)ruthenium(II)-doped silica nanoparticles (Ru(bpy)32+-doped SNPs) as DNA tags, is described. In this protocol, Ru(bpy)32+-doped SNPs was used for DNA labeling with trimethoxysilylpropydiethylenetriamine(DETA) and glutaraldehyde as linking agents. The Ru(bpy)32+-doped SNPs labeled DNA probe was hybridized with target DNA immobilized on the surface of polypyrrole (PPy) modified Pt electrode. The hybridization events were evaluated by ECL measurements and only the complementary sequence could form a double-stranded DNA (dsDNA) with DNA probe and give strong ECL signals. A three-base mismatch sequence and a non-complementary sequence had almost negligible responses. Due to the large number of Ru(bpy)32+ molecules inside SNPs, the assay allows detection at levels as low as 1.0 × 10−13 mol l−1 of the target DNA. The intensity of ECL was linearly related to the concentration of the complementary sequence in the range of 2.0 × 10−13 to 2.0 × 10−9 mol l−1.  相似文献   

2.
This paper describes the electrogenerated chemiluminescence (ECL) processes of Ru(bpy)32+/nicotine system at ITO working electrode. An ECL-based method for rapid and sensitive detection of nicotine in phosphate buffer solution at pH 8.0 is established. Strong ECL emission was observed at a positive potential of 1.4 V vs. Ag/AgCl. A possible ECL mechanism is proposed for the Ru(bpy)32+/nicotine system, the oxidation product of nicotine at the electrode surface reacts with the 3+ state of ruthenium bipyridyl (2+) complex and form ruthenium complex exited state ions and thus releases photons. Effect of pH (medium/electrolyte), working potential, buffer composition, buffer concentration, reactant and co-reactant (nicotine) concentration, flow rate and loop size on the ECL spectrum of the Ru(bpy)32+/nicotine were studied. At the optimized experimental conditions, lower detection limit for nicotine was observed as 1.2 nmol L−1 (S/N = 3). Linear relationship between ECL current and concentration of nicotine was observed (up to 100 μmol L−1) with R-value of 0.997. The relative standard deviation with 5 μmol L−1 concentration of nicotine for 20 analyses was only 1.4%. A 94% recovery rate was observed in a real sample analysis without any complications/disturbance in measurement. Interferences of humid acid, camphor and SDS were not observed in their presence in the sample solution. The established procedure for nicotine quantification manifests fascinating results and can be suggested for further applications.  相似文献   

3.
Glyphosate, a phosphorus-containing amino acid type herbicide was used as a coreactant for studying of electrochemiluminescence (ECL) reaction of tris(2,2′-bipyridyl)ruthenium(II) [Ru(bpy)32+] in an aqueous solution. In a phosphate buffer solution of pH 8, glyphosate itself was known to be electrochemically inactive at glassy carbon electrode, however, it participated in a homogeneous chemical reaction with the electrogenerated Ru(bpy)33+, and resulted in producing Ru(bpy)32+ species at the electrode surface. Kinetic and mechanistic information for the catalysis of glyphosate oxidation were evaluated by the steady-state voltammetric measurement with an ultramicroelectrode. The simulated cyclic voltammogram based on this mechanism was in good agreement with that obtained experimentally. ECL reaction of Ru(bpy)32+/glyphosate system was found to be strongly dependent on the media pH. In a pH region of 5-9, an ECL wave appeared at ca. +1.1 V vs. Ag/AgCl, which was caused by the generation of *Ru(bpy)32+ via a Ru(bpy)33+-mediated oxidation of glyphosate. When pH >10, a second ECL wave was observed at ca. +1.35 V vs. Ag/AgCl, which was believed to be associated with a reaction between Ru(bpy)33+ and the species from direct oxidation of GLYP at a GC electrode surface.  相似文献   

4.
Significant effect of chloride ions on the electrogenerated chemiluminescence (ECL) behavior of the ruthenium(II)tris(2,2′-bipyridine) (Ru(bpy)32+)/tri-n-propylamine (TPrA) system at a Au electrode was reported. At low concentrations (e.g., [Cl] < 5 mM), the ECL was enhanced; at relatively high concentrations, however, the ECL intensity decreased with the increase of the [Cl]. At [Cl] = 90 mM, ∼50% and 100% ECL inhibition was observed for the first and the second ECL wave, respectively. The electrogenerated gold-chloride complexes (AuCl2 and AuCl4) which were verified using an electrochemical quartz-crystal microbalance (EQCM) method were found to be responsible for the ECL inhibition. This study suggests that care must be taken when a Au working electrode is used for ECL studies in chloride-containing buffer solutions (widely used in DNA probes) and/or with the commonly used chloride-containing reference electrodes since in these cases the ECL behavior may significantly disagree with that obtained using other electrodes and reaction media.  相似文献   

5.
An electrogenerated chemiluminescence (ECL) reaction of the Ru(bpy)32+ (2,2′-bipyridyl, bpy)/co-reactant system in the extremely high-potential region (over 2.6 V versus Ag/AgCl) was probed using a boron-doped diamond (BDD) electrode. At the BDD electrode, three ECL waves (1.25, 2.30 and 3.72 V) were observed in cyclic voltammograms for 20 mM ascorbic acid (AA). For the ECL peaks observed at 1.25 V corresponding to the oxidation potential for Ru(bpy)32+ (1.15 V), the light intensities and current densities were found to depend on the square root of the AA concentration. This suggests that AA oxidation, followed by the formation of the reducing radical that is necessary for generating the excited state of Ru(bpy)32+* occurred through homogeneous electron-transfer between Ru(bpy)33+ and the AA species. However, for the ECL peaks at 2.30 V, the current densities and light intensities linearly increased with increasing AA concentration, suggesting that the reducing radical was formed through the direct oxidation at the electrode surface. The ECL reaction at 3.72 V was observed only at the BDD electrode and not at other electrodes. The onset potentials for the light intensity were approximately 2.6 V, independently of the type of the co-reactants (e.g. 2-propanol and AA). The peak potentials exhibited linear relation with the co-reactant concentration. In the analysis of the ECL intensity for various co-reactants (alcohols) that show different reactivity for the hydrogen abstraction reaction, the order of the light intensities at the peaks for alcohols was found to be consistent with that for the rate constants of the hydrogen abstraction reaction. These results indicate that the co-reactant radical was formed through the hydrogen abstraction reaction with the hydroxyl radical (HO) generated during the oxygen evolution reaction.  相似文献   

6.
The electrogenerated chemiluminescence (ECL) of Ru(bpy)32+ (bpy = 2,2′-bipyridyl) with tertiary aliphatic amines as co-reactants, was theoretically and experimentally studied as a function of the pre-equilibria involved in the ammonium proton lost and in relation to the nature of the rate determining step. Transient potential steps were used with a 3-mm glassy carbon disk electrode or carbon fiber ultramicroelectrodes array to investigate emission behavior in a variety of aqueous solution types, containing phosphate, tartrate and phthalate acid-base systems at differing pH values. The emission of Ru(bpy)32+ resulting from the reaction with n-tripropylamine (TPrA), tri-isobutylamine (TisoBuA), n-tributylamine (TBuA), methyl-di-n-propylamine (MeDPrA) and triethylamine (TEtA) in varying acid-base media was interpreted on the basis of the quoted pre-equilibria, ammonium pKa being known. The nature of the rate determining steps changes depending on pH. Above pH ≈ 5 the amine neutral radical formation is the rate determining step and, is independent of pH with rate constant close to 103 s−1; below pH ≈ 5 the rate determining step becomes the deprotonation of the ammonium ion, operated by different bases present in solution. Different amines in the same acid-base system showed analogous ECL behavior, conditioned by the chosen acid base system. A single amine in different acid-base systems showed different kinetic behaviors, due to the dissociation constants of the chosen buffers. The concentration of the acid-base system also played an important role and influenced emission intensity and shape. ECL emission were simulated by finite difference methods, implementing a previously proposed mechanism by including the relevant pre-equilibria. Simulation may also give estimates of the pKa values of the ammonium ions. An ion pair formation between R3N+ and the mostly charged species present in solution is hypothesized to explain the contradictory experimental results concerning the reaction mechanism of the proton lost of the radical cation.  相似文献   

7.
Zhenyu Lin  Bin Qui 《Electrochimica acta》2008,53(22):6464-6468
A glassy carbon electrode (GCE) modified with cobalt(II) meso-tetraphenylporphrine/multiwall-carbon nanotube (CoTPP/MWNT) was applied to investigate the electrochemiluminescent (ECL) behavior of luminol. The ECL intensity of luminol was found to be increased greatly on this modified electrode. The presence of cobalt(II) meso-tetraphenylporphrine (CoTPP) can catalyze the reduction of oxygen on the electrode surface to produce HOO, which can increase the ECL intensity of luminol. Moreover, MWNT can provide the more effective area of the electrode, and can act as a promoter to enhance the electrochemical reaction. The proposed method enables a detection limit for luminol of 1.0 × 10−8 mol/L in the neutral solution. Under the optimum condition, the enhanced ECL intensity of luminol by H2O2 had a linear relationship with the concentration of H2O2 in the range of 1.0 × 10−7 to 8.0 × 10−8 mol/L with the detection limit of 5.0 × 10−9 mol/L.  相似文献   

8.
Electrochemical oxidation of guanine mediated by [Ru(bpy)2dpp]2+ (where bpy = 2,2′-bipyridine, dpp = 2,3-bis (2-pyridyl) pyrazine) and their electrochemical assembly at an ITO electrode prompted by guanine have been investigated with cyclic voltammetry and differential pulse voltammetry. It is found that [Ru(bpy)2dpp]2+ can serve as an excellent mediator to induce the oxidation of guanine, and the mediated peak currents increase linearly with the rise of guanine concentration in the range from 0.01 to 0.20 mmol L−1. Interestingly, with the increase of repetitive voltammetric sweeping numbers, [Ru(bpy)2dpp]3+/2+ can be assembled onto the ITO electrode and guanine has the ability to enhance the peak currents of prewaves. Also, with the rise of guanine concentration from 0.01 to 0.15 mmol L−1, the peak currents of prewaves increase gradually. Meanwhile, the mediated mechanism of guanine oxidation by [Ru(bpy)2dpp]2+ and the assembled process of [Ru(bpy)2dpp]3+/2+ on the ITO surface in the presence of guanine are discussed in detail.  相似文献   

9.
The transfer of Cd2+ facilitated by 1,10-Phenanthroline (phen) was investigated at the microinterface of two immiscible electrolyte solutions, hosted by a 25 μm diameter orifice of a micropipette. Cyclic voltammetry (CV) was employed to examine the transfer in the conditions of the ligand (organic phase) in excess and Cd2+ (aqueous phase) in excess. In these conditions, asymmetric (peak-shaped in the forward scan and steady state in the backward scan), and reversible steady state (for the two scan directions) voltammograms were observed. The dependence of half-wave potential on the ligand concentration suggested that the equilibrium was effectively displaced towards a 1:3 (Cd2+:ligand) stoichiometry, with a formation constant, β3 = 3.9 × 1029. The diffusion coefficients of Cd2+ in the aqueous solution and those of phen, Cd(phen)32+ in organic phase were evaluated to be 6.5 × 10−6, 5.8 × 10−6, and 5.1 × 10−6 cm2 s−1 respectively, using CV.  相似文献   

10.
Hong Dai 《Electrochimica acta》2008,53(16):5113-5117
A novel graphite/poly(methyl methacrylate) (graphite/PMMA) electrode was prepared in this paper. It was found that the developed polymer graphite paste electrode has some advantages in electrochemistry and electrochemiluminescence (ECL), such as high sensitivity, good reproducibility, quick and wide linear range of response to some biomolecules. The ECL behavior of luminol has been investigated in detail at the graphite/PMMA electrode, and vitamin C was found to be able to inhibit this ECL system. Based on which an inhibited ECL detection method has been developed for determination of vitamin C in this paper. The proposed method exhibited good reproducibility, wide-range linearity, high sensitivity and stability with a detection limit of 8.3 × 10−9 mol L−1 (signal-to-noise ratio = 3) and linear response range of 2.5 × 10−8-1.0 × 10−4 mol L−1. The relative standard deviation was 2.3% for 5 × 10−6 mol L−1 vitamin C (n = 9). The possible mechanism for inhibition of luminol on graphite/PMMA electrode has also been proposed.  相似文献   

11.
The structure of amphiphilic low-dimensional copolymer electrolytes I of similar overall composition but prepared by different synthetic procedures X and Y are described. I are copolymers of poly[2,5,8,11,14-pentaoxapentadecamethylene(5-alkyloxy-1,3-phenylene)] (CmO5) and poly[2,-oxatrimethylene(5-alkyloxy-1,3-phenylene)] (CmO1) where the alkyl side chains having m carbons are hexadecyl or mixed dodecyl/octadecyl (50/50). 1H NMR shows that the copolymers have 50% (m = 16) or only 18 and 13% of CmO5 units and DSC indicates that the copolymers have ‘block’ sequencing of CmO1 and CmO5 segments. Molecular dynamics modelling indicates that in CmO5 Li+ and BF4 ions are separated by Li+ encapsulation in tetraethoxy segments but in ionophobic CmO1 units the salt is mostly present as neutral aggregates decoupled from the polymer. Conductivities of these microphase-separated mixtures with salt-bridge amphiphilic polyethers II and III of each system are similar. They have low temperature dependence over the range 20 °C to 110 °C at ∼10−3 S cm−1. 7Li NMR linewidth measurements confirm high lithium mobilities at −20 °C. A conduction mechanism is proposed whereby Li+ hopping takes place along rows of decoupled aggregates (dimers/quadrupoles) within an essentially block copolymer structure. Subambient measurements to −10 °C gave a conductivity of 4 × 10−5 S cm−1.  相似文献   

12.
Boron incorporation from the gas phase was achieved in MPCVD grown (100)-oriented homoepitaxial diamond layers, either with or without a small fraction of oxygen in the gas phase, in addition to hydrogen, methane and diborane. From secondary Ion Mass Spectroscopy (SIMS), it is shown that the 0.25% of oxygen decreases the Boron concentration [B] by two orders of magnitude. In this way, we demonstrate that it becomes possible to control [B] with low levels of compensation and passivation down to the 1015 cm− 3 range. Cathodoluminescence spectroscopy is systematically performed in seventeen samples under a 10 kV acceleration voltage at 5 K and the exciton bound to boron (BETO) intensity to the free exciton (FETO) intensity ratio is evaluated (IBETO/IFETO). A linear relationship between IBETO/IFETO and [B] with a coefficient of 3.5 × 1016 cm− 3 is demonstrated for [B] < 3 × 1017 cm− 3 in single crystalline diamond, irrespective of the gas phase composition during growth.  相似文献   

13.
A glassy carbon (GC) electrode was modified with cobalt pentacyanonitrosylferrate (CoPCNF) film. Cyclic voltammetry (CV) of the CoPCNF onto the GC (CoPCNF/GC) shows a redox couple (FeIII/FeII) with a standard potential (E0′) of 580 mV. The current ratio Ipa/Ipc remains almost 1, and a peak separation (ΔEp) of 106 mV is observed in 0.5 M KNO3 as the supporting electrolyte. Anodic peak currents were found to be linearly proportional to the scan rate between 10 and 200 mV s−1, indicating an adsorption-controlled process. The redox couple of the CoPCNF film presents an electrocatalytic response to sulfide in aqueous solution. The analytical curve was linear in the concentration range of 7.5 × 10−5 to 7.7 × 10−4 M with a detection limit of 4.6 × 10−5 M for sulfide ions in 0.5 M KNO3 solution.  相似文献   

14.
A self-assembled bilayer lipid-like membrane (BLM) supported on glassy carbon electrode (GCE) was fabricated using 5,5-ditetradecyl-2-(2-trimethyl-ammonioethyl)-1,3-dioxane bromide (DTDB) for epinephrine (EP) determination in the presence of ascorbic acid (AA). This modified electrode (DTDB/GCE) has strong membrane adsorption accumulation and electrocatalytic ability toward EP and AA. The oxidation of EP was controlled by double step adsorption accumulation process of the DTDB-BLM. The parameters of fitted Langmuir isotherm Γmax, BADS, and ΔGADS values were determined as 1.0×10−11 mol cm−2, 2.04×106 dm3 mol−1, and −45.17 kJ mol−1 for the fist step for EP concentration less than 1 mM, and 4.92×10−11 mol cm−2, 7.35×104 dm3 mol−1, and −37.1 kJ mol−1 for the second step for EP concentration higher than 1 μM. The DPV peaks for EP and AA oxidations were appeared at 0.220 and 0.085 V versus SCE, respectively, allowing the determination of EP in the presence of high concentration of AA. The advantage of DTDB-BLM was demonstrated experimentally in comparison with other three BLMs, and attributed to the dioxane group as well as the suitable length of the carbon chain of DTDB molecule. The current response of the DTDB/GCE was fast and reproducible, suitable for the electrochemical sensing in flow-injection systems. A linear range of 1×10−8 to 1×10−4 M EP was preliminary obtained using a simple setup.  相似文献   

15.
Au nanoparticles (AuNPs) are good quenchers once they closely contact with luminophore. Here we reported a simple approach to obtain enhanced electrogenerated chemiluminescence (ECL) behavior based on Au/CdS nanocomposite films by adjusting the amount of AuNPs in the nanocomposite. The maximum enhancement factor of about 4 was obtained at an indium tin oxide (ITO) electrode in the presence of co-reactant H2O2. The mechanism of this enhancement was discussed in detail. The strong ECL emission from Au/CdS nanocomposites film was exploited to determine H2O2. The resulting ECL biosensors showed a linear response to the concentration of H2O2 ranging from 1.0 × 10−8 to 6.6 × 10−4 mol L−1 with a detection limit of 5 nmol L−1 (S/N = 3) and good stability and reproducibility.  相似文献   

16.
Cytosine plays an important role in many biological processes since it constitutes the buildings blocks of DNA and RNA. A two-step reduction of Zn2+ ions at the dropping mercury electrode in acetic buffers at pH 4 and 5 in the presence of cytosine was examined. The measurements were performed using an impedance method in a wide potential and frequency ranges.The values of the standard rate constants ks in the both studied system decrease from 3.8 × 10−3 to 2 × 10−3 cm s−1 at pH 4 and from 5.1 × 10−3 to 2.5 × 10−3 cm s−1 at pH 5. The values of the standard rate constants ks1 characterizing the stage of the first electron transfer decrease similarly. However, the values of the standard rate constants ks2 characterizing the stage of the second electron exchange decrease more markedly in the buffer at pH 4 than in the buffer at pH 5.  相似文献   

17.
A novel cathodic electrochemiluminescence (ECL) behavior of the norfloxacin (NFLX)/peroxydisulfate (S2O82−) system in purely aqueous solution at a glassy carbon electrode (GCE) was firstly reported in this paper. The NFLX/S2O82− system could produce a very strong ECL signal under the potential scan from 0 to −1.8 V in 0.1 M phosphate buffer solution (pH 7.0) containing 0.24 mg/mL NFLX and 10 mM S2O82−, which was about 350 times higher than that of S2O82− alone, while NFLX did not produce ECL in the absence of S2O82−. The effects of pH value, S2O82− and NFLX concentration on the ECL intensity were investigated and the possible mechanism for the ECL behavior of NFLX/S2O82− system was proposed.  相似文献   

18.
7Li and 19F NMR linewidths and impedance spectra are reported for low-dimensional CmOn (I):LiBF4 mixtures. Data for the ionophilic polymer C18O5 is compared with that for the ionophobic C18O1 and the block copolymer C16O1O5(21%) (21 mol% of C16O5). In C18O5:LiBF4 (1:1) narrow 7Li linewidths, which were observed in the liquid crystal phase above the side chain melting temperature (∼50 °C), persist in the crystal down to ca. 0 °C and broaden below −20 °C. However, in C18O1:LiBF4 (1:0.6) narrow 7Li linewidths were also observed down to −20 °C suggesting highly mobile neutral aggregates of salt since this system is non-conductive. In the copolymer C16O1O5(21%):LiBF4 (1:0.7) the linewidths were even narrower down to −70 °C with weak temperature dependence. In all systems 19F linewidths were significantly broader than 7Li linewidths. The complex plane plots obtained by impedance spectroscopy exhibit characteristic minima identified with ‘grain boundary’ resistance and, following heat treatment, minima with weak temperature dependence identified with ‘internal crystal’ resistance, Ri, and conductivities, σi ≥ 10−4 S cm−1. Four-component mixtures of copolymers CmO1O5 and CmO1O4 with LiBF4 and ‘salt-bridge’ poly(tetramethylene oxide)-dodecamethylene copolymers gave conductivities of ca. 4 × 10−4 S cm−1 at 20 °C with weak temperature dependence. A novel carrier-hopping mechanism of lithium transport decoupled from side chain melting in the crystalline state is postulated.   相似文献   

19.
The spectroscopy, electrochemistry, and electrochemiluminescence (ECL) of cyclometalated iridium(III) bis(2-(p-tolyl)pyridinato-N, C2′) (picolinate) [(tpy)2Ir(pico)] was investigated. (tpy)2Ir(pico) shows high photoluminescence efficiency (ΦPL = ∼0.31) and quasi-reversible redox behaviors in acetonitrile solution. Intense green ECL was observed from all three modes of ECL generation (annihilation, oxidative-reduction, and reductive-oxidation). Relative ECL efficiencies with or without coreactants from (tpy)2Ir(pico) were estimated using Ru(bpy)32+ (bpy, 2,2′-bipyridine) as a relative standard. Typically, in the reductive-oxidation process with peroxodisulfate (S2O82−), (tpy)2Ir(pico) produces 8-fold more efficient ECL at approximately 531 nm than Ru(bpy)32. This efficient green ECL indicates potential for the development of multicolored ECL analysis in addition to standard Ru(bpy)32+ systems.  相似文献   

20.
A new method with high sensitivity was developed to determine gossypol content using CdTe quantum dot (QD) electrochemiluminescence (ECL) with a room temperature ionic liquid (RTIL) modified glassy carbon (GC) electrode. It was found that use of RTIL film on the GC electrode can greatly enhance the ECL intensity of CdTe QDs, and the ECL peak potential and ECL onset potential were both shifted positively. Under optimal conditions, the quenching effect of gossypol on the ECL emission of CdTe QDs was observed, and ECL intensity showed a good linear relationship in the gossypol concentration range of 5.0 × 10−7 to 5.0 × 10−9 M with a detection limit of 5.0 × 10−9 M. The proposed method was used to detect gossypol in cottonseed oil with satisfactory results. As a result, the introduction of an RTIL-modified electrode can extend the analytical applications of QD ECL systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号