首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
The inhibition of copper corrosion in 3% NaCl solution was studied by using a well-known inhibitor, benzotriazole (BTAH), and its not so extensively explored derivative, 1-hydroxybenzotriazole (BTAOH). Electrochemical methods, i.e., linear polarization, Tafel and potentiodynamic curve measurements and electrochemical quartz crystal microbalance (EQCM) measurements were used. Corrosion parameters and inhibition effectiveness were determined. Experimental results showed that benzotriazole is a more effective inhibitor of the corrosion of copper in chloride media than 1-hydroxybenzotriazole. Whereas in the presence of BTAH a protective Cu-BTA layer is formed on the Cu surface, in the presence of BTAOH a thick, poorly protective layer is formed, which readily dissolves in chloride solution. Kinetic parameters were calculated based on EQCM results. Adsorption of BTAOH follows a linear growth law, in contrast to BTAH, whose film growth can be best represented at first by a parabolic, and later by logarithmic, growth law. Different mechanisms of growth imply different mechanisms of inhibition and account for the different inhibition effectiveness. Density functional theory calculations were performed to characterize certain features of the molecular structures, including the electronic parameters related to the inhibition effectiveness of these inhibitors. Introduction of the –OH group into the benzotriazole molecules does not change their electronic parameters significantly neither in gas phase nor in the presence of water solvent. Other parameters, therefore, affect the inhibition effectiveness of these corrosion inhibitors. In particular, superior inhibition effectiveness of BTAH is attributed to interplay of planar molecular structure, physisorption and intermolecular H-bonding, which cooperatively may result in formation of thin and protective film on the surface.  相似文献   

2.
The purines and its derivatives, such as, guanine, adenine, 2,6-diaminopurine, 6-thioguanine and 2,6-dithiopurine, were investigated as corrosion inhibitors for mild steel in 1 M HCl solution by weight loss measurements, electrochemical tests and quantum chemical calculations. The polarization curves of mild steel in the hydrochloric acid solutions of the purines showed that both cathodic and anodic processes of steel corrosion were suppressed. The Nyquist plots of impedance expressed mainly as a depressed capacitive loop with different compounds and concentrations. For all these purines, the inhibition efficiency increased by increasing the inhibitor concentration, and the inhibition efficiency orders are 2,6-dithiopurine > 6-thioguanine > 2,6-diaminopurine > adenine > guanine with the highest inhibiting efficiency of 88.0% for 10−3 M 2,6-dithiopurine.The optimized structures of purines, the Mulliken charges, molecular orbital densities and relevant parameters were calculated by quantum chemical calculations. The quantum chemical calculation results inferred that the adsorption belong to physical adsorption, which might arise from the π stacking between the π electron of the purines and the metal surface.  相似文献   

3.
Quantum chemical calculations were performed on azacyclo C5 to C14 amines, open chain C6 to C14 amines and phenylazacyclo C5 to C14 amines. Inspection of the calculated parameters and corrosion inhibition efficiencies were made to observe any clear links, which might exist between the two. Possible correlations between experimental inhibition efficiencies and parameters such as dipole moment (μ), highest occupied (EHOMO) and lowest unoccupied (ELUMO) molecular orbitals and the differences between them, HOMO-LUMO gap (Δ), as well as some structural characteristics were investigated. The models of the inhibitors were optimized with the Modified Neglect of Diatomic Overlap (MNDO) method. The Quantitative Structure Activity Relationship (QSAR) approach has been used and a composite index of some quantum chemical parameters were constructed in order to characterize the inhibition performance of the tested molecules. The inhibition effect of polymethylene amines is closely related to orbital energies and/or energy gap and dipole moment.  相似文献   

4.
Abstract

The development of cost-effective, sustainable, eco-friendly and efficient compounds is a renovated science and a demanding assignment for today’s chemists and technology specialists. In this context, the anticorrosion effect of a new Schiff base hydrazone, namely (E)-2-(4-(2-(methyl(pyridin-2-yl)amino)ethoxy)benzylidiene)hydrazine-1-carboxamide (MPAH) against the mild steel (MS) surface in 1.0?M HCl has been analyzed utilizing experimental methods, thermodynamic characterizations, and computational studies. MPAH has proven to be an effective inhibitor in 1.0?M HCl solution. Its inhibition performance improved by raising the concentration of the compound to an optimal concentration of 5?×?10?3 M, and 97% efficiency was achieved at 303?K. Inhibitor adsorption on the MS has been explicated with both physical and chemical interactions. The adsorption was in accordance with the isotherm of Langmuir. The impact of MPAH on the surface of MS had been confirmed utilizing SEM/EDX, electrochemical impedance spectroscopy (EIS), gravimetric measurements (WL), and potentiodynamic polarization (PDP). The adsorption of the studied compound on the MS surface has also been investigated by DFT and the molecular dynamics (MD) simulations.  相似文献   

5.
酸洗缓蚀剂的应用研究现状及发展趋势   总被引:20,自引:0,他引:20  
周晓湘  刘建平 《工业水处理》2002,22(1):16-18,22
概述酸洗和酸洗缓蚀剂对于热力设备的重要性,综述国内外酸洗缓蚀剂的研究状况及酸洗缓蚀剂的种类,文中针对工业生产中的不同情况,列举了硫酸酸洗缓蚀剂、盐酸酸洗缓蚀剂、氢氟酸酸洗缓蚀剂、硝酸酸洗缓蚀剂的应用现状,并阐明酸洗缓蚀剂的缓蚀机理及其发展趋势。  相似文献   

6.
Abstract

Corrosion inhibitors based on environmentally friendly and harmless products are currently being studied and developed. The corrosion inhibition properties of caffeine (1,3,7-trimethylxanthine) on copper corrosion in aqueous chloride solution (3.5?wt.% NaCl) are analysed here using stationary and transient electrochemical methods, and a theoretical study based on density functional theory is carried out. Caffeine is a very competitive compared to the chemical inhibitors that are often used for copper protection. Electrochemical and impedance experiments reveal that the protective efficiency of caffeine reaches a value of 96% at a concentration of 10?2?mol L?1. Based on these results, the Langmuir model appears to be the best representation of the adsorption of caffeine onto the copper surface. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy and X-ray diffraction (XRD) were used to determine the surface morphology and the chemical composition of the copper surface in chloride media, in the absence and presence of caffeine. The results show the development of a mechanism of corrosion inhibition. In order to confirm the correlation between the inhibitory effect and the molecular structure of caffeine, quantum chemical parameters are used to calculate its electronic properties.  相似文献   

7.
The corrosion inhibition of poly ethylene glycol (PEG) toward the aluminum surface in 1.0 M HCl has been studied by weight loss and polarization techniques. The results showed that the PEG acts as a good inhibitor and the inhibition efficiency is due to the anodic and cathodic inhibition (mixed type). The thermodynamic functions were calculated to find a good correlation with the inhibition efficiency. Quantum chemical parameters were calculated using ab initio and DFT methods to find a good correlation with the inhibition efficiency. A good correlation was found between the theoretical calculations and experimental observations.  相似文献   

8.
Inhibition of C-steel corrosion by some thiadiazole derivatives (I–VI) in 1 M H2SO4 was investigated by weight loss, potentiodynamic polarization, linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS) techniques. The presence of these compounds in the solution decreases the double layer capacitance, increases the charge transfer resistance and increase of linear polarization. Polarization studies were carried out at room temperature, and showed that all the compounds studied are mixed type inhibitors with a slight predominance of cathodic character. The effect of temperature on corrosion inhibition has been studied and the thermodynamic activation and adsorption parameters were calculated and discussed. Electrochemical impedance was used to investigate the mechanism of corrosion inhibition. The adsorption of the compounds on C-steel was found to obey Langmuir’s adsorption isotherm. The synergistic effect brought about by combination of the inhibitors and KSCN, KI and KBr was examined and explained. The mechanism of inhibition process was discussed in the light of the chemical structure and quantum-chemical calculations of the investigated inhibitors.  相似文献   

9.
Shank is the central scaffolding protein of the postsynaptic density (PSD) protein complex found in cells of the central nervous system. Cellular studies indicate a prominent role of the protein in the organization of the PSD, in the development of neuronal morphology, in neuronal signaling, and in synaptic plasticity, thus linking Shank functions to the molecular basis of learning and memory. Mutations in the Shank gene have been found in several neuronal disorders including mental retardation, typical autism, and Asperger syndrome. Shank is linked to the PSD complex via its PDZ domain that binds to the C‐terminus of guanylate‐kinase‐associated protein (GKAP). Here, small‐molecule inhibitors of Shank3 PDZ domain are developed. A fluorescence polarization assay based on an identified high‐affinity peptide is established, and tetrahydroquinoline carboxylates are identified as inhibitors of this protein–protein interaction. Chemical synthesis via a hetero‐Diels–Alder strategy is employed for hit optimization, and structure–activity relationship studies are performed. Best hits possess Ki values in the 10 μM range, and binding to the PDZ domain is confirmed by 1H,15N HSQC NMR experiments. One of the hits crystallizes with the Shank3 PDZ domain. The structure, analyzed at a resolution of 1.85 Å, reveals details of the binding mode. Finally, binding to PDZ domains of PSD‐95, syntrophin, and DVL3 was studied using 1H,15N HSQC NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号