首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This part II paper presents the verified results of the toughness correction methodology for welded joints of wide plates. The equivalent CTOD ratio, βr, is applied to the fracture data of the welded joints from lower to upper ductile-brittle transition temperature region. In the part I paper, βr is defined as the ratio of CTOD in the standard fracture toughness specimen to CTOD in the wide plate with welding residual stress at the same level of the Weibull stress. In this part II paper, the equivalent CTOD ratio, βr, under the welding residual stress field has been verified for assessment of constraint loss effects on CTOD fracture toughness of wide plate. Fracture assessments have been conducted by applying the methodology for “After Weld Notch” and “Before Weld Notch” type welded joints. It has been found that an excessive conservatism observed in the conventional procedure is reasonably reduced by applying the proposed methodology.  相似文献   

2.
This paper presents a procedure for transferring the CTOD fracture toughness obtained from laboratory specimens to an equivalent CTOD for structural components, taking constraint loss into account. The Weibull stress criterion is applied to correct the CTOD for constraint loss, which leads to an equivalent CTOD ratio, β, defined as β = δ/δWP, where δ and δWP are CTODs of the standard fracture toughness specimen and the structural component, respectively, at the same level of the Weibull stress. The CTOD ratio β is intended to apply to the fracture assessment of ferritic steel components to stress levels beyond small-scale yielding. Nomographs are given to determine the β-value as a function of the crack type and size in the component, the yield-to-tensile ratio of the material and the Weibull shape parameter m. Examples of the fracture assessment using β are shown within the context of a failure assessment diagram (FAD). An excessive conservatism observed in the conventional procedure is reduced reasonably by applying the equivalent CTOD ratio, β.  相似文献   

3.
In engineering design, a difficulty has always existed in those standard laboratory tests that cannot accurately predict the behavior of large structures like pipelines due to the different constraint levels. At present, extensive work has been done to characterize the constraint effects on fracture toughness by introducing a second parameter, while the systematic research on constrained transformation is inadequate. To address this issue, the ductile fracture process of X65 SENB specimen is simulated through the finite-element method coupled with the Gurson–Tvergaard–Needelman model. The parameters crack tip opening displacement (CTOD) and crack tip opening angle (CTOA) are chosen to characterize the fracture behaviors. The effects of specimen thickness on fracture toughness based on CTOD/CTOA and constraints ahead of crack tips in SENB specimen are studied. The results indicate that the critical values of CTOD/CTOA decrease with the increase of specimen thickness, but the constraint parameters are opposite. Furthermore, it finds that there is a near linear relationship between critical values of CTOD/CTOA and the stress constraint ahead of the crack tip. Thus, a constraint-corrected fracture failure criterion based on CTOD/CTOA is proposed, which can be used for the prediction and simulation of stable tearing crack growth in specimens and structures, made of this steel with any thickness value.  相似文献   

4.
裂纹尖端张开位移(CTOD)试验是深海管线管的一个重要试验项目,试验通常使用矩形横截面试样,由于该试样是截取焊接接头的一部分,并不能很好地反映整个焊接接头的断裂韧度。根据BS 7448:Part2:1997的要求制备全壁厚试样并在-10℃下做低温CTOD试验,结果与矩形横截面试样的结果作比较,发现全壁厚试样的断裂韧度明显优于矩形横截面试样的断裂韧度,分析发现结果与焊缝的应力状态、化学成分和显微组织的影响有关。全壁厚试样能更真实地反映焊接接头的真实断裂韧度,更好地指导工程设计。  相似文献   

5.
Contrary to the previous work that successfully applied the constant CTOD/CTOA fracture criteria to relatively thin structures, this paper demonstrates that the initial non-constant portion of the CTOD/CTOA plays an essential role in predicting fracture behavior under plane-strain conditions. Three- and two-dimensional finite element analyses indicate that a severe underestimation of the load would occur as the crack extends if a constant CTOD/CTOA criterion were used. However, the use of a simplified, bilinear CTOD/CTOA criterion to approximate its non-constant portion will closely duplicate the test data. Furthermore, using the experimental data from J-integral tests with various crack length to specimen width ratios (a/W), it is demonstrated that the critical CTOD/CTOA is crack tip constraint dependent. The initial high values of the CTOD/CTOA are in fact a natural consequence of crack growth process that is reflected by, and consistent with, the J-resistance (J-R) curve and its slope (tearing modulus).  相似文献   

6.
In the present study, the tension and fracture toughness tests on high strength structural steel of Q420 were carried out in different conditions of non-prestraining and prestraining. The results indicated that the prestrain increased the yield stress and tensile strength, but decreased the fracture toughness. Meanwhile, the local parameters m and σu controlling the brittle fracture were obtained using finite element method (FEM) analysis. Based on the Weibull stress fracture criterion, the prestraining effect on the fracture toughness was predicted from fracture toughness results of the virgin material by the local approach. The prediction was in good agreement with the experimental results. It certified that the critical Weibull stress obeys the two-parameter Weibull distribution in the local approach, and the fracture behaviour of the material with prestrain can be characterised well by the local approach.  相似文献   

7.
8.
The part-through fracture toughness (KIe) and crack-tip opening displacement (CTOD, δm) of welded joints of aluminum alloy (AA) 20l4-T6, including the weld metal, the fusion zone (FZ), the heat-affected zone (HAZ), and the base material, were investigated at both liquid nitrogen temperature and liquid helium temperature with surface-crack tension (SCT) specimen and single-edge-notched bend (SENB) specimen respectively. Results indicate a conventional fusion welding process leads to formation of second-phase precipitations and inclusions, which cause significant reduction of fracture resistance at the weld metal and the FZ by fractographic analyses of fractured surface.  相似文献   

9.
Crack tip opening displacement (CTOD) has been calculated using the plastic hinge model with an assumed rotational center since the British Standards Institution (BS) standardized BS5762 in 1979. The American Society for Testing and Materials (ASTM) accepted the plastic hinge model and standardized E1290 in 1989. However, ASTM revised E1290 in 2002, and has proposed a conversion from J to CTOD. CTOD-based fracture toughness evaluation has been widely used for the defect assessment of many welded structural components, and two different CTOD calculations could lead to confusion for Fitness-for-Service. In this study, the effects of CTOD testing methodologies on CTOD values were investigated according to round robin tests conducted by the Japan Welding Engineering Society (WES), and the concept of CTOD as a fracture parameter is discussed.  相似文献   

10.
Defects in structural components are often associated with welds that may contain significant levels of residual stress. Whilst the primary load acting on the component may induce low constraint conditions at the crack tip, the presence of residual stresses, e.g. due to welding, can modify this constraint level and consequently influence the observed fracture toughness behaviour. This paper presents the results of a combined experimental and numerical programme aimed at exploring this issue. Cleavage fracture toughness data for high and low constraint specimens are presented with and without residual stresses. The results indicate that under certain conditions, the constraint-induced increase in cleavage fracture toughness may be eroded by the presence of a residual stress in the vicinity of the crack. The results are quantified with respect to two-parameter fracture mechanics in which the  T  and  Q  parameters are appropriately defined. Preliminary guidance is provided for the assessment of defects when residual stresses may influence crack-tip constraint.  相似文献   

11.
The relationship between Charpy absorbed energy and the fracture toughness by means of the (crack tip opening displacement (CTOD)) method was analyzed based on the Weibull stress criterion. The Charpy absorbed energy and the fracture toughness were measured for the SN490B steel under the ductile-brittle transition temperature region. For the instrumented Charpy impact test, the curves between the loading point displacement and the load against time were recorded. The critical Weibull stress was taken as a fracture controlled parameter, and it could not be affected by the specimen configuration and the loading pattern based on the local approach. The parameters controlled brittle fracture are obtained from the Charpy absorbed energy results, then the fracture toughness for the compact tension (CT) specimen is predicted. It is found that the results predicted are in good agreement with the experimental. The fracture toughness could be evaluated by the Charpy absorbed energy, because the local approach give  相似文献   

12.
This work examines the effect of weld strength mismatch on fracture toughness measurements defined by J and CTOD fracture parameters using single edge notch bend (SE(B)) specimens. A central objective of the present study is to enlarge on previous developments of J and CTOD estimation procedures for welded bend specimens based upon plastic eta factors (η) and plastic rotational factors (r p ). Very detailed non-linear finite element analyses for plane-strain models of standard SE(B) fracture specimens with a notch located at the center of square groove welds and in the heat affected zone provide the evolution of load with increased crack mouth opening displacement required for the estimation procedure. One key result emerging from the analyses is that levels of weld strength mismatch within the range ±20% mismatch do not affect significantly J and CTOD estimation expressions applicable to homogeneous materials, particularly for deeply cracked fracture specimens with relatively large weld grooves. The present study provides additional understanding on the effect of weld strength mismatch on J and CTOD toughness measurements while, at the same time, adding a fairly extensive body of results to determine parameters J and CTOD for different materials using bend specimens with varying geometries and mismatch levels.  相似文献   

13.
This work proposes that the Weibull stress scale parameter, σu, increases with temperature to reflect the increasing microscale toughness of ferritic steels caused by local events that include plastic shielding of microcracks, microcrack blunting, and microcrack arrest. The Weibull modulus, m, then characterizes the temperature invariant, random distribution of microcrack sizes in the material. Direct calibration of σu values at temperatures over the DBT region requires extensive sets of fracture toughness values. A more practical approach developed here utilizes the so-called Master Curve standardized in ASTM Test Method E1921-02 to provide the needed temperature vs. toughness dependence for a material using a minimum number of fracture tests conducted at one temperature. The calibration procedure then selects σu values that force the Weibull stress model to predict the Master Curve temperature dependence of KJc values for the material. At temperatures in mid-to-upper transition, the process becomes more complex as fracture test specimens undergo gradual constraint loss and the idealized conditions of high-constraint, small-scale yielding assumed in E1921-02 gradually degenerate. The paper develops the σu calibration process to incorporate these effects in addition to consideration of threshold toughness effects and the testing of fracture specimens with varying crack-front lengths. Initial illustrations of the calibration process for simpler conditions, i.e. 1T crack-front lengths, use the temperature dependent flow properties and a range of toughness levels for an A533B pressure vessel steel. Then using the extensive fracture toughness data sets for an A508 pressure vessel steel generated recently by Faleskog et al. [Engng. Fract. Mech., in press], the paper concludes with calibrations of both m and σu over the DBT region and assessments of the Master Curve calibration approach developed here.  相似文献   

14.
This work provides an estimation procedure to determine the J-integral and CTOD for pipes with circumferential surface cracks subjected to bending load for a wide range of crack geometries and material (hardening) based upon fully-plastic solutions. A summary of the methodology upon which J and CTOD are derived sets the necessary framework to determine nondimensional functions h1 and h2 applicable to a wide range of crack geometries and material properties characteristic of structural, pressure vessel and pipeline steels. The extensive nonlinear, 3-D numerical analyses provide a definite full set of solutions for J and CTOD which enters directly into fitness-for-service (FFS) analyses and defect assessment procedures of cracked pipes and cylinders subjected to bending load.  相似文献   

15.
This paper presents a modified maximum tangential stress criterion (MMTS) for prediction of the fracture initiation conditions in kinked bi-material cracks. The criterion takes into account the effect of T-stress as well as the stress intensity factors (KI and KII) to predict the mixed mode fracture toughness of interface cracked specimens. First the fracture criterion is developed and the effect of sign and magnitude of T-stress on mixed mode fracture toughness is studied analytically. Then, the suggested criterion is evaluated using the experimental data reported for some epoxy/Aluminum Brazil-nut-sandwich specimens in the literature. The MMTS criterion is also compared with the conventional maximum tangential stress (MTS) criterion and hence, significantly improved estimates were achieved for mixed mode fracture toughness of the tested specimens.  相似文献   

16.
The purpose of this work is to assess a gouge defect in a pipe submitted to internal pressure. To do that a method based on failure assessment diagram and more precisely on a Modified Notch Failure Assessment Diagram (NMFAD) which has been proposed as a mesofracture approach. The safety factor has been determine under conservative conditions i.e. for a X52 pipe steel having a relatively low fracture toughness and a severe gouge defect with high aspect ratio and high constraint. In addition a mesofracture approach of the fracture toughness transferability problem has been proposed. The crack (KT) methodology has been modifying to create the (KρTef) two parameters fracture resistance criterion.  相似文献   

17.
Research has been performed to study the effect of constraint dependent fracture toughness of parent metal and HAZ for steels applied for fabrication of oil and gas floating production, storage and off-loading (FPSO) vessels and ships. A test method was employed to study the HAZ crack tip opening displacement (CTOD) fracture toughness at various levels of constraint avoiding excessive scatter usually associated with conventional HAZ CTOD testing, which may obscure effects of constraint.The objective of the research was to determine the material dependent constraint parameters in Ainsworth and O'Dowd's constraint modified fracture assessment approach and to develop a method based on information from the literature pertaining to the structural constraint in plates with semi-elliptical surface cracks. Results due to Wang and Parks and Nakamura and Parks computed using line-spring and FE analyses were used to establish polynomial expressions for the structural constraint in tension and bending applicable to fracture assessment of shallow fatigue cracks initiated at weld toes in floating offshore structures such as FPSOs.The results of the analyses clearly show that fracture assessment of semi-elliptical surface cracks in tension would be overly conservative if constraint effects are not accounted for in the Option 1 or Option 2 fracture assessment curves or in fracture toughness. It was also found from the tests conducted on specially prepared wide-plate test specimens, that the constraint modified Option 1 curve was conservative for fracture assessment of semi-elliptical surface cracks located in the HAZ of a 500 MPa minimum specified yield strength quenched and tempered steel for offshore application.  相似文献   

18.
This work deals with the influence of crack depth on the fracture toughness at initiation of crack growth and the constraint factor in relationship between the J-integral and the crack tip opening displacement (CTOD). A series of tests were performed on high strength low alloyed HT80 steel welds, and the critical J-integral and CTOD were determined using the load versus load point displacement record from three-point bend specimens with 0.05 < a/W < 0.5. It was found that the fracture toughness for shallow cracks at the onset of crack growth was larger than that for deep cracks for the steel welds tested, but it is felt that there is no fixed relationship between these values in the welds tested. The constraint factor is also a function of crack depth, and values of the factor increase from 0.5 to 1.5 when a/W increases from about 0.05 to 0.5. The factors are not very sensitive to the crack tip materials (HAZ or weld metal) in the welds tested.  相似文献   

19.
In the first part of the paper, the use of circumferentially cracked round bars (CRB geometry) for characterizing fracture toughness of a ductile material, namely copper, is assessed experimentally through a comparison with the single edge notched bend (SENB) geometry. The J R curve method with multiple-specimens was applied, but, as unstable cracking appeared very early in the CRB specimen, an engineering definition of fracture toughness was not pertinent. Unloaded specimens were analyzed metallographically to determine the CTOD at physical cracking initiation. The fracture toughness measured using the CRB geometry was 50% larger than using the SENB geometry. The second part of the paper aims at justifying this difference of fracture toughness at cracking initiation. Finite element simulations revealed a slightly higher constraint in the SENB specimens. The main difference between the two specimen geometries lies in a 50% larger extension of the finite strain zone with respect to the CTOD in the case of the SENB specimens. Based on the observation that, in the studied material, the critical CTOD is one order of magnitude larger than the void spacing, we conclude that the geometry dependence of the fracture toughness is caused by the difference in the finite strain zone extension rather than by a stress triaxiality effect.  相似文献   

20.
This work focuses on an evaluation procedure to determine the elastic?Cplastic J-integral and Crack Tip Opening Displacement (CTOD) fracture toughness based upon the ??-method for C(T) fracture specimens made of homogeneous and welded steels. The primary objective of this investigation is to enlarge on previous developments of J and CTOD estimation procedures for this crack configuration while, at the same time, addressing effects of strength mismatch on the plastic ??-factors. The present analyses enable the introduction of a larger set of factors ?? for a wide range of crack sizes (as measured by the a/W-ratio) and material properties, including different levels of weld strength mismatch, applicable to pipeline and pressure vessel steels. Very detailed non-linear finite element analyses for plane-strain and 3-D models of C(T) fracture specimens with centerline-cracked welds provide the evolution of load with increased load-line and crack mouth opening displacement required for the estimation procedure. Overall, the present study, when taken together with previous investigations, provides a fairly extensive body of results to determine parameters J and CTOD for different materials using C(T) specimens with varying overmatch conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号