首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 739 毫秒
1.
This work aims at evaluating the fracture surfaces of tensile samples taken from a new kind of ductile iron referred to as ‘dual‐phase Austempered Ductile Iron (ADI)’, a material composed of ausferrite (regular ADI microstructure) and free (or allotriomorphic) ferrite. The tensile fracture surface characteristics and tensile properties of eight dual‐phase ADI microstructures, containing different relative quantities of ferrite and ausferrite, were studied in an alloyed ductile cast iron. Additionally, samples with fully ferritic and fully ausferritic (ADI) matrices were produced to be used as reference. Ferritic–pearlitic ductile irons (DI) were evaluated as well. For dual‐phase ADI microstructures, when the amount of ausferrite increases, tensile strength, yield stress and hardness do so too. Interesting combinations of strength and elongation until failure were found. The mechanisms of fracture that characterise DI under static uniaxial loading at room temperature are nucleation, growth and coalescence of microvoids. The fracture surface of fully ferritic DI exhibited an irregular topography with dimples and large deformation of the nodular cavities, characteristic of ductile fracture. Microstructures with small percentages of ausferrite (less than 20%) yielded better mechanical properties in relation to fully ferritic matrices. These microstructures presented regions of quasi‐cleavage fracture around last‐to‐freeze zones, related to the presence of ausferrite in those areas. As the amount of ausferrite increased, a decrease in nodular cavities deformation and a flatter fracture surface topography were noticed, which were ascribed to a higher amount of quasi‐cleavage zones. By means of a special thermal cycle, microstructures with pearlitic matrices containing a continuous and well‐defined net of allotriomorphic ferrite, located at the grain boundaries of recrystallised austenite, were obtained. The results of the mechanical tests leading to these microstructures revealed a significant enhancement of mechanical properties with respect to completely pearlitic matrices. The topographies of the fracture surfaces revealed a flat aspect and slightly or undeformed nodular cavities, as a result of high amount of pearlite. Still isolated dimple patterns associated to ferritic regions were observed.  相似文献   

2.
This work is a continuation of the studies presented in a recent paper by the authors, where the fracture surfaces of pearlitic ductile cast iron under different loading conditions were exhaustively analysed. In this study, fracture surfaces of ferritic ductile cast iron (or ferritic spheroidal graphite cast iron) generated under impact, bending and fatigue loading conditions were characterised and compared. The fracture surfaces were characterised qualitatively and quantitatively from the observation under a scanning electron microscope. The fracture mechanisms in each case were identified. For impact tests, as test temperature increases, the dominant fracture mechanism changes from brittle to ductile. For bending tests, a fully ductile fracture micromechanism dominates the surface. In fatigue tests, the surface shows a mix of flat facets that appear to be cleavage facets and ductile striations, but the typical fatigue striations are not easily found on the fracture surface. Methodologies for the determination of the macroscopic direction of main crack propagation in both ductile and brittle failure modes are proposed. These allow identifying main crack propagation direction with good approximation. The results are potentially useful to identify the nature of loading conditions in a fractured specimen of ferritic spheroidal graphite cast iron. The authors believe that it is necessary to extend the methodologies proposed in samples with different geometry and size, before they can be used to provide additional information to the classical fractographic analysis.  相似文献   

3.
Ductile cast irons are technologically important materials and are used extensively in automotive industry. Defects produced during casting process often play a dominant role in limiting mechanical properties and fatigue life under cyclic loading in cast alloy components. In order to investigate the effects of process induced defects on the fatigue behavior, in this paper two batches of ductile iron specimens cast using green sand and lost foam molding processes were studied. The ductile irons produced by lost foam molding generally were characterized to have lustrous carbon defects which left from the foam material. To evaluate the effect of lustrous carbon defects on fatigue performance of lost foam molded specimens, experimental fatigue tests were conducted on the both batches of ductile cast iron specimens to obtain S–N data. These data were used to compare fatigue performance of two batches of specimens. The lost foam molded specimens obviously exhibit lower fatigue life i.e. lower S–N curve than green sand molded specimens. Also, the fatigue life of lost foam molded specimens were predicted using AFGROW software, which works based on linear elastic fracture mechanics (LEFM), by assuming lustrous carbon defects as cracks in which they grow until final fracture under cyclic load. The predicted fatigue lives were compared with the experimental ones.  相似文献   

4.
This research work aimed to find out the influences of the different amounts of chunky graphite on mechanical and fatigue properties of GJS 800 ductile cast iron. Chunky graphite has been a problem of heavy section thick-walled ductile cast iron components. Chunky graphite is branched and interconnected as a network within eutectic cells and has been observed to form in thermal centres of heavy ductile cast iron sections during solidification. This research work proved that chunky graphite in the microstructure decreases the ultimate tensile strength, the elongation to fracture and fatigue life significantly, but does not influence on the yield stress of ductile cast iron GJS 800 substantially. Low nodular count and nodularity rate also decrease the fatigue life of ductile cast iron, and the difference of fatigue life of specimens containing chunky graphite or having low nodular count and nodularity rate is not large. Influence of the amount of chunky graphite on fatigue life increases until 20% chunky graphite content, and above that the fatigue life does not decrease substantially.  相似文献   

5.
通过静拉伸试验、低温冲击试验、布氏硬度试验和组织形貌分析,研究了QT400—18L球墨铸铁的缩松缺陷对其力学性能的影响。结果表明:缩松使材料的强度和塑性大幅度降低,断裂形式主要为韧性断裂;冲击断裂形式为大量解理和少量韧窝构成的混合断裂;布氏硬度值比标准硬度值至少降低9%;缩松对石墨形态、分布和材料的显微组织无明显影响。  相似文献   

6.
In this paper, the fatigue behaviour of heavy section pearlitic ductile iron castings has been investigated. The inoculation treatment has been changed for each casting in order to investigate its influence on the mechanical and fatigue properties of the materials.Tensile tests and axial fatigue tests under nominal ratio R = 0.01 have been performed on specimens taken from the core of casting components characterized by long solidification times. Scanning Electron Microscopy has been used to investigate the fracture surface of the broken samples in order to identify crack initiation points and fracture mechanisms. Metallographic analyses have been carried out to measure nodule count and nodules dimensions and to identify matrices structures.It has been found that fatigue behaviour is strongly influenced by defects, such as microshrinkages or degenerated graphite particles near to specimens' surface. It has been also found that inoculation process influences the microstructure and the fatigue resistance of heavy section pearlitic ductile iron castings.  相似文献   

7.
In this study, fracture surfaces of pearlitic ductile iron generated under impact, bending and fatigue tests were characterised and compared. The fracture mechanisms in each case were identified from the observation of scanning electron microscopy images, and the characteristic topographic features were quantitatively and qualitatively evaluated. Cleavage was the predominant fracture mechanism for impact loading at all test temperatures and for slow bending testing. On the other hand, under fatigue loading, the fracture surfaces showed a mix of cleavage and ductile striation areas. A complex but reliable methodology for the determination of the direction of propagation of the main crack was also proposed, based on a careful analysis of the river patterns along the cleavage planes.  相似文献   

8.
Salzbrenner has recently determined the fracture toughness of a series of ductile cast iron samples which were heat treated to produce a fully ferritic matrix. His results indicated that the fracture toughness is strongly dependent upon the average spacing between (or equally the diameter of) the spherical graphite nodules in the ferrite matrix. The acoustic emission generated during the uniaxial compressive deformation of nodular cast iron also depends strongly on the average diameter of the graphite nodules in the test sample. The present investigation was carried out to determine the correlations, if any, between the fracture toughness and the acoustic emission generated during compression of ductile cast iron. The acoustic emission generated during compression was determined using sample materials identical to those used by Salzbrenner. Excellent correlations between certain features of the measured acoustic emission and the fracture toughness were obtained. Data indicate that it should be possible to determine both the fracture toughness and the average size of the graphite nodules from the acoustic emission and load curve generated during a compression test of ductile cast iron.  相似文献   

9.
Effect of microstructure on properties of ADI and low alloyed ductile iron   总被引:3,自引:0,他引:3  
Microstructure, tensile, impact, hardness, fractography and wear characteristics were investigated for: (1) Austempered ductile iron (ADI); and (2) low alloyed ductile iron. Comparison has been made between the properties of these two types and that of conventional ductile iron. Detailed analysis, of the fracture mode for the 3 types of ductile iron, which failed under tensile and impact testing, were presented using the SEM. The wear properties were determined using pin-on-ring machine, under dry sliding conditions. The variation of mass loss and coefficient of friction with sliding distance, at different loads and speeds were presented and discussed. The wear mechanisms were investigated by means of subsurface observations. Microhardness test was used to study the change in the matrix strength with distance from the worn surface due to plastic deformation.  相似文献   

10.
The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Measurements of ultimate tensile strength, 0.2% proof strength, elongation and unnotched Charpy impact energy are presented as a function of alloy amounts within 0.25 to 0.75 wt pct range. Hardness is measured on the broken tensile specimens. The small additions of Mo, Cu, Ni and Cr changed the-as-cast mechanical properties owing to the different as-cast matrix microstructures. The ferrite matrix of Mo and Ni alloyed cast iron exhibits low strength and hardness as well as high elongation and impact energy. The increase in Mo and Ni contents developed some fractions of pearlite structures near the austenite eutectic cell boundaries, which caused the elongation and impact energy to drop in a small range. Adding Cu and Cr elements rapidly changed the ferrite matrix into pearlite matrix, so strength and hardness were significantly increased. As more Mo and Cr were added, the size and fraction of primary carbides in the eutectic cell boundaries increased through the segregation of these elements into the intercellular boundaries.  相似文献   

11.
12.
The effect of increased carbon content and heat treatment parameters on the microstructure and selected properties of ferritic-austenitic duplex cast steel is discussed. Test results show that the cast steel microstructure after the solution heat treatment changes substantially with increasing carbon content. Ageing after the solution heat treatment results in approx. 20% increase in hardness and a few-times decrease in impact strength. Fractographic examinations show that fracture surfaces of specimens of steel with low carbon content are typically of transcrystalline ductile micromechanism. An increase in carbon content is accompanied by a decline in ductility areas, while fracture of specimens is of mixed nature: ductile and brittle. After ageing, only cases of mixed fracture were observed. __________ Translated from Problemy Prochnosti, No. 1, pp. 133–136, January–February, 2008.  相似文献   

13.
It was evaluated the microstructural and mechanical response that a non alloyed ductile iron (DI) presented when was subjected to Conventional Austempering (CA) and Stepped Austempering (SA) heat treatments. X-ray Diffraction (XRD) quantification techniques demonstrated to be the more reliable method for monitoring phase transformations taking place during both CA and SA. When CA was applied some intercellular areas remain untransformed even for long time, however when samples were subjected to SA those untransformed areas disappeared and instead finer ausferrite was found. Additionally mechanical properties values obtained from tensile and impact tests confirmed that for all times used, SA was superior to the CA.  相似文献   

14.
Abstract

In the present paper, the effects of the heat treatment processes with two conditioning treatments and four quenching–tempering processes on the mechanical properties of 2·25Cr–1Mo–0·25V high strength low alloyed (HSLA) steel are investigated. The results show that the conditioning treatments have obvious effects on the low temperature impact energy but little effect on the tensile strength. The elevation of the final austenitising temperature increases the strength, whereas it results in the decrease in the low temperature impact energy due to the coarse microstructure. The results of the fracture surfaces analysis further make sure that the fracture surfaces of tensile specimens all exhibit ductile characters with a lot of dimples. However, the fracture surfaces of impact specimens exhibit two typical fracture characters, i.e. the ductile and brittle fracture surface corresponding to the fine and coarse microstructures respectively. In addition, the elongation and reduction in area seem to be insensitive to the heat treatments. Meanwhile, the impact fracture mode is more sensitive to the grain size and not to the low temperature impact energy.  相似文献   

15.
This work concerns mechanical properties of an austempered ductile cast iron (ADI). Samples alloyed with copper and molybdenum were austenitized at 910 °C for 90 min and subsequently austempered in a salt bath over a range of temperatures from 350 °C to 410 °C to obtain favorable mechanical properties such as tensile strength, elongation, and fracture toughness. Those properties were compared from various austempering heat treatments.  相似文献   

16.
改性纳米SiC粉体强化球墨铸铁的组织和力学性能研究   总被引:1,自引:0,他引:1  
陈美玲  李建卫  高宏 《材料导报》2006,20(Z1):214-215
在生产条件下用改性纳米SiC粉体对球墨铸铁进行了强韧化处理,研究了不同的纳米SiC粉体加入量对球墨铸铁组织和力学性能的影响.结果表明,经改性纳米SiC粉体强韧化后,球墨铸铁中的石墨球尺寸减小,圆整度提高,铁素体含量增多,球墨铸铁的韧性提高.断口分析结果表明,经过强韧化处理后,球墨铸铁的断裂方式为脆性韧性混合断裂.  相似文献   

17.
The fracture mechanics behaviour of high-nickel austenitic compacted graphite cast iron was studied and the effects of graphite morphology, alloying elements and specimen thickness on the mechanical properties, plane stress fracture toughness, and fatigue crack growth rate were evaluated. It was found that the graphite morphology, i.e. the percentage of compacted graphite present, was the major determinant of all properties of the materials investigated. The irons with a greater amount of compacted graphite (the balance was nodular graphite in austenitic matrix) resulted in lower tensile strength, yield strength, elongation and K c fracture toughness but higher crack-growth index values (poorer crack-growth resistance). For 25 mm thick specimens, K c values of the austenitic compacted graphite cast irons in this study were in the range of 58–64 MPa m1/2. This is higher than ferritic/pearlitic ductile iron of 43–53 Mpa m1/2, and is compatible to Ni-resist austenitic ductile iron of 64.1 Mpa m1/2. The addition of cobalt not only contributed to slightly higher values of mechanical properties, but also higher plane stress fracture toughness and better crack growth resistance. Optical microscopy, scanning electron microscopy and X-ray diffraction techniques were applied to correlate the microstructural features to the properties attained.  相似文献   

18.
WC–Co cemented carbides with different WC grain sizes and Co binder contents were sintered and fabricated. The three-point bending specimens with a single edge notch were prepared for tests. In the experiments, the mechanical properties of materials were investigated under static and cyclic loads (20 Hz) in air at room temperature. The fatigue behaviors of the materials under the same applied loading conditions are presented and discussed. Optical microscope and scanning electron microscopy were used to investigate the micro-mechanisms of damage during fatigue, and the results were used to correlate with the mechanical fatigue behavior of WC–Co cemented carbides. Experimental results indicated that the fatigue fracture surfaces exhibited more fracture origins and diversification of crack propagation paths than the static strength fracture surfaces. The fatigue fracture typically originates from inhomogeneities or defects such as micropores or aggregates of WC grains near the notch tip. Moreover, due to the diversity and complexity of the fatigue mechanisms, together with the evolution of the crack tip and the ductile deformation zone, the fatigue properties of WC–Co cemented carbides were largely relevant with the combination of transverse rupture strength and fracture toughness, rather than only one of them. Transverse rupture strength dominated the fatigue behavior of carbides with low Co content, whilst the fatigue behavior of carbides with high Co content was determined by fracture toughness.  相似文献   

19.
Austempered cast irons have been the subject of much attention in recent years because of their excellent mechanical properties. The hardness, ultimate tensile strength and dynamic elastic modulus are presented for a commercially available unalloyed compacted iron (C.E. 4.31) and correlated with different matrix microstructures (as-cast, ferritized, normalized and austempered). For this study, two isothermal temperatures for the austempering treatment were chosen: 400°C and 300°C. The influence of a ferritizing treatment prior to normalizing and austempering has been evaluated, the results indicating that no advantages are obtained with this additional treatment. The influence of microstructure on properties and on the resulting fracture surfaces in tensile tests are discussed.  相似文献   

20.
针对镁合金在轻量化结构件领域的应用前景,采用基于MIG焊的电弧增材制造工艺开展了两组不同路径的AZ31镁合金增材实验,并对其微观组织和力学性能进行了分析。结果表明:增材构件相较于原始焊丝的化学成分无较大变化;单道次多层往复堆积路径相较于多道次多层堆积路径,更易制得表面更为平整,内部更为致密的构件,其屈服强度为77.3 MPa,抗拉强度为235 MPa,达到原始焊丝75%的力学性能水平,平均显微硬度为52.7HV,断后伸长率最高达到了27%;增材构件拉伸断裂方式为韧性断裂,并在多道次多层往复堆积构件断口处发现其内部存在气孔。验证了电弧增材制造AZ31镁合金工艺的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号