首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Mg-Ni-Ti-based hydrogen storage alloys Mg0.9Ti0.1Ni1−xMx (M = Co, Mn; x = 0, 0.1, 0.2) were prepared by means of mechanical alloying (MA). The effects of partial substitution of Ni with Co or Mn on the microstructures and electrochemical performance of the alloys were investigated. The result of X-ray diffraction (XRD) shows that the alloys exhibit dominatingly amorphous structures. The electrochemical measurements indicate that the substitution of Ni can dramatically enhance the cycle stability of Mg-Ni-Ti-based alloys. After 50 charge/discharge cycles, the capacity retention rate of the alloy electrodes increases from 30% (Mg0.9Ti0.1Ni) to 59% (Mg0.9Ti0.1Ni0.9Co0.1), 58% (Mg0.9Ti0.1Ni0.9Mn0.1), 46% (Mg0.9Ti0.1Ni0.8Co0.2) and 53% (Mg0.9Ti0.1Ni0.8Mn0.2), respectively. Among these alloys, the Mg0.9Ti0.1Ni0.9Mn0.1 alloy presents better overall electrochemical performance. The cyclic voltammograms (CV) and anti-corruption test reveal that the electrochemical cycle stability of these alloys is improved by substituting Ni with Co or Mn.  相似文献   

2.
The effect of Mn content on the crystal structure and electrochemical characteristics of La0.7Mg0.3Ni2.975−xCo0.525Mnx (x = 0, 0.1, 0.2, 0.3, 0.4) alloys has been studied systematically. The results of the Rietveld analyses show that all these alloys mainly consist of two phases: the La(La,Mg)2Ni9 phase with the rhombohedral PuNi3-type structure and the LaNi5 phase with the hexagonal CaCu5-type structure. The pressure-composition isotherms shows that the partial substitution of Mn for Ni results in lower desorption plateau pressure and steeper pressure plateau of the alloy electrodes. For a Mn content of x = 0.3, the electrochemical performances, including specific discharge capacity, high rate chargeability (HRC) and high rate dischargeability (HRD), of the alloy are preferable. Moreover, the data of the polarization resistance Rp and the exchange current density I0 of the alloy electrodes is consistent with the results of HRC and HRD. The hydrogen diffusion coefficient D increases with increasing Mn content, and thereafter increases the low temperature dischargeability (LTD) of the alloy electrodes.  相似文献   

3.
For (Ti1−xVx)2Ni (x = 0.05, 0.1, 0.15, 0.2 and 0.3) ribbons, synthesized by arc-melting and subsequent melt-spinning techniques, an icosahedral quasicrystalline phase was present, either in the amorphous matrix or together with the stable Ti2Ni-type phase. With increasing x values, the maximum discharge capacity of the alloy electrodes increased until reached 271.3 mAh/g when x = 0.3. The cycling capacity retention rates for these electrodes were approximately 80% after a preliminary test of 30 consecutive cycles of charging and discharging. Ti1.7V0.3Ni alloy electrode displayed the best high-rate discharge ability of 82.7% at the discharge current density of 240 mA/g.  相似文献   

4.
Yuan Li  Jinhua Li 《Electrochimica acta》2007,52(19):5945-5949
Phase structure and electrochemical properties of the Ml1−xMgxNi2.80Co0.50Mn0.10Al0.10 (x = 0.08, 0.12, 0.20, 0.24, 0.28) (Ml = La-rich mixed lanthanide) alloys were studied. X-ray diffraction (XRD) analysis and Rietveld refinement show that the alloys consist mainly of LaNi5 and (La,Mg)Ni3 phase. Due to variation in phases of the alloys, the maximum discharge capacity, the high rate dischargeability (HRD), and the low temperature dischargeability increase first and then decrease. The maximum discharge capacity increases from 322 mAh g−1 (x = 0.08) to 375 mAh g−1 (x = 0.12), and then decreases to 351 mAh g−1 (x = 0.28) with increasing x. As the case of x = 0.20, HRD at 1200 mA g−1 and discharge capacity at 233 K reaches 41.7% and 256 mAh g−1, respectively. The cycling stability is improved by substituting La with Ml and B-site multi-alloying, and the capacity retention of Ml0.72Mg0.28Ni2.80Co0.50Mn0.10Al0.10 at the 200th cycle is 71%.  相似文献   

5.
A series of Ni substituted spinel LiNixMn2−xO4 (0 ≤ x ≤ 0.5) have been synthesized to study the evolution of the local structure and their electrochemical properties. X-ray diffraction showed a few Ni cations moved to the 8a sites in heavily substituted LiNixMn2−xO4 (x ≥ 0.3). X-ray photoelectron spectroscopy confirmed Ni2+ cations were partially oxidized to Ni3+. The local structures of LiNixMn2−xO4 were studied by analyzing the and A1g Raman bands. The most compact [Mn(Ni)O6] octahedron with the highest bond energy of Mn(Ni)O was found for LiNi0.2Mn1.8O4, which showed a Mn(Ni)O average bond length of 1.790 Å, and a force constant of 2.966 N cm−1. Electrolyte decomposition during the electrochemical charging processes increased with Ni substitution. The discharge capacities at the 4.1 and 4.7 V plateaus obeyed the linear relationships with respect to the Ni substitution with the slopes of −1.9 and +1.9, which were smaller than the theoretical values of −2 and +2, respectively. The smaller slopes could be attributed to the electrochemical hysteresis and the presence of Ni3+ in the materials.  相似文献   

6.
Iron is a key element in the development of Co-free AB5-type hydrogen storage alloys. The aim of this work is to systematically investigate the effects of Fe and Co on the electrochemical properties of LaNi4.6−xMn0.4Mx (M = Fe or Co, x = 0, 0.25, 0.5 and 0.75) hydrogen storage alloys under relatively low temperatures (273, 253 and 233 K). The results showed that substitution of Fe for Ni reduced the low temperature electrochemical performance much more seriously than that of Co. Exchange current density (I0), charge-transfer resistance (Rct) and hydrogen diffusion coefficient (D) were determined based on the study of linear polarization, electrochemical impedance spectrum (EIS) and galvanostatic discharge, respectively. Both the hydrogen diffusion in the bulk of alloy particles and the electrochemical reaction at the alloy electrolyte interface were found to be greatly limited as the decrease of temperature. During the EIS analysis, interestingly, we found that the semicircle in the high frequency region increased dramatically with the decrease of temperature. The electrochemical process corresponding to this semicircle was proposed to be related to the oxide layer on the surface of alloy particles. Novel explanations of EIS response in metal hydride electrodes were proposed accordingly.  相似文献   

7.
Electrodeposition of Ni1−xFex (x = 0.1-0.9) films was carried out from a chloride plating solution containing saccharin as an organic additive at a constant current density (5 mA/cm2) and a controlled pH of 2.5. X-ray diffraction studies revealed the existence of an fcc, or γ phase, in the range of 10-58 wt.% Fe, a mixed fcc/bcc phase in the range of 59-60 wt.% Fe, and a bcc, or α phase in the range of 64-90 wt.% Fe. The saturation magnetization, Bs, of electrodeposited Ni1−xFex alloys at the room temperature was found to increase with the increase of Fe-content and follows the Slater-Pauling curve, but deviates from as-cast bulk NiFe alloys. The coefficient of thermal expansion, CTE, of electrodeposited alloys at room temperature also deviates from as-cast bulk NiFe alloys. Annealing of α-Ni36Fe64 alloy results in a martensitic α → γ phase transformation, which takes place between 300 and 400 °C. It was demonstrated that thermal treatment above 400 °C was necessary to obtain magnetic and mechanical properties similar to those to conventional Invar alloy. Annealing of α-Ni36Fe64 alloy at 700 °C brings about a decrease of Bs from 1.75 to 0.45 T. By controlling the annealing conditions of α → γ martensitic transformation, it is possible to adjust the CTE of Ni36Fe64 alloy over the broad limits from 2.7 to 8.7 × 10−6/°C.  相似文献   

8.
Layered Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) have been prepared by the mixed hydroxide and molten-salt synthesis method. The individual particles of synthesized materials have a sub-microsize range of 200-500 nm, and LiNi0.475Mn0.475Zr0.05O2 has a rougher surface than that of LiNi0.5Mn0.5O2. The Li/Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) electrodes were cycled between 4.5 and 2.0 V at a current density of 15 mA/g, the discharge capacity of both cells increased during the first ten cycles. The discharge capacity of the Li/LiNi0.475Mn0.475Zr0.05O2 cell increased from 150 to 220 mAh/g, which is 50 mAh/g larger than that of the Li/LiNi0.5Mn0.5O2 cell. We found that the oxidation of oxygen and the Mn3+ ion concerned this phenomenon from the cyclic voltammetry (CV). Thermal stability of the charged Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) cathode was improved by Zr doping.  相似文献   

9.
The structure and electrochemical properties of TiV1.1Mn0.9Nix (x = 0.1-0.7) solid solution electrode alloys have been investigated. It is found that these alloys mainly consist of a solid solution phase with body centered cubic (bcc) structure and a C14 Laves secondary phase. The solid solution alloys show easy activation behavior, high temperature dischargeability, high discharge capacity and favorable high-rate dischargeability as a negative electrode material in Ni-MH battery. The maximum discharge capacity is 502 mAh g−1 at 303 K when x = 0.4. Electrochemical impedance spectroscopy (EIS) test shows that the charge-transfer resistance at the surface of the alloy electrodes decreases obviously with increasing Ni content.  相似文献   

10.
The effect of La/Ce ratio on the structure and electrochemical characteristics of the La0.7−xCexMg0.3Ni2.8Co0.5 (x = 0.1, 0.2, 0.3, 0.4, 0.5) alloys has been studied systematically. The result of the Rietveld analyses shows that, except for small amount of impurity phases including LaNi and LaNi2, all these alloys mainly consist of two phases: the La(La, Mg)2Ni9 phase with the rhombohedral PuNi3-type structure and the LaNi5 phase with the hexagonal CaCu5-type structure. The abundance of the La(La, Mg)2Ni9 phase decreases with increasing cerium content whereas the LaNi5 phase increases with increasing Ce content, moreover, both the a and cell volumes of the two phases decrease with the increase of Ce content. The maximum discharge capacity decreases from 367.5 mAh g−1 (x = 0.1) to 68.3 mAh g−1 (x = 0.5) but the cycling life gradually improve. As the discharge current density is 1200 mA g−1, the HRD increases from 55.4% (x = 0.1) to 67.5% (x = 0.3) and then decreases to 52.1% (x = 0.5). The cell volume reduction with increasing x is detrimental to hydrogen diffusion D and accordingly decreases the low temperature dischargeability of the La0.7−xCexMg0.3Ni2.8Co0.5 (x = 0.1-0.5) alloy electrodes.  相似文献   

11.
Layered Li1+x(Ni0.3Co0.4Mn0.3)O2−δ (x = 0, 0.03 and 0.06) materials were synthesized through the different calcination times using the spray-dried precursor with the molar ratio of Li/Me = 1.25 (Me = transition metals). The physical and electrochemical properties of the lithium excess and the stoichiometric materials were examined using XRD, AAS, BET and galvanostatic electrochemical method. As results, the lithium excess Li1.06(Ni0.3Co0.4Mn0.3)O2−δ could show better electrochemical properties, such as discharge capacity, capacity retention and C rate ability, than those of the stoichiometric Li1.00(Ni0.3Co0.4Mn0.3)O2−δ. In this paper, the effect of excess lithium on the electrochemical properties of Li1+x(Ni0.3Co0.4Mn0.3)O2−δ materials will be discussed based on the experimental results of ex situ X-ray diffraction, transmission electron microscopy (TEM) and galvanostatic intermittent titration technique (GITT)  相似文献   

12.
Oxygen reduction reaction (ORR) on Pt microelectrode was used for developing a micro pH sensor for scanning electrochemical microscopy (SECM) study in this work. When the potential of Pt microelectrode was held constant in ORR region, the ORR current (cathodic current) increased with decreasing solution pH and vice versa. The response time of the ORR current to pH changes was measured to be ca. 30 ms which implies that the pH response is fast enough for monitoring the temporal pH changes. Furthermore, a fine linear relationship was found to exist between the half wave potential of ORR (E1/2) and the solution pH value, and the slope is −46 mV/pH. The Pt micro pH sensor was located 1 μm above the LaNi5−xAlx (x = 0, 0.3) substrate electrode surface in pH = 9 KOH solution to perform the tip-substrate voltammetry of SECM. In tip voltammogram, the ORR tip current qualitatively reflects the transit solution pH changes during LaNi5−xAlx discharge reaction. Also, the minimum values of the solution pH near LaNi5 and LaNi4.7Al0.3 surface during the discharge reaction were quantitatively detected; they were 7.17 and 7.57, respectively. The result indicates that Al partial substitution for Ni degrades the maximum discharge ability of the alloy and decreases the hydrogen diffusion coefficient in alloy bulk.  相似文献   

13.
La(1−x)SrxFeO3 (x = 0.2,0.4) powders were prepared by a stearic acid combustion method, and their phase structure and electrochemical properties were investigated systematically. X-ray diffraction (XRD) analysis shows that La(1−x)SrxFeO3 perovskite-type oxides consist of single-phase orthorhombic structure (x = 0.2) and rhombohedral one (x = 0.4), respectively. The electrochemical test shows that the reaction at La(1−x)SrxFeO3 oxide electrodes are reversible. The discharge capacities of La(1−x)SrxFeO3 oxide electrodes increase as the temperature rises. With the increase of the temperature from 298 K to 333 K, their initial discharge capacity mounts up from 324.4 mA h g−1 to 543.0 mA h g−1 (when x = 0.2) and from 147.0 mA h g−1 to 501.5 mA h g−1 (when x = 0.4) at the current density of 31.25 mA g−1, respectively. After 20 charge-discharge cycles, they still remain perovskite-type structure. Being similar to the relationship between the discharge capacity and the temperature, the electrochemical kinetic analysis indicates that the exchange current density and proton diffusion coefficient of La(1−x)SrxFeO3 oxide electrodes increase with the increase of the temperature. Compared with La0.8Sr0.2FeO3, La0.6Sr0.4FeO3 electrode is a more promising candidate for electrochemical hydrogen storage because of its higher cycle capacity at various temperatures.  相似文献   

14.
To improve the cathodic performance of olivine-type LiMnPO4, we investigated the optimal annealing conditions for a composite of carbon with cation doping. Nanocrystalline and the cation-doped LiMn1−xMxPO4 (M = Ti, Mg, Zr and x = 0, 0.01, 0.05 and 0.10) was synthesized in aqueous solution using a planetary ball mill. The synthesis was performed at the fairly low temperature of 350 °C to limit particle size. The obtained samples except for the Zr doped one consisted of uniform and nano-sized particles. The performance of LiMnPO4 was much improved by an annealing treatment between 500 and 550 °C with carbon in an inert atmosphere. A small amount of metal-rich phosphide (Mn2P) was detected in the sample annealed at 900 °C. In addition, 1 at.% Mg doping for Fe enhanced the rate capability in our doped samples. The discharge capacity of LiMn0.99Mg0.01PO4/C was 146 mAh/g at 0.1 mA/cm2 and 125 mAh/g even at 2.0 mA/cm2.  相似文献   

15.
Li2Fe1−xMnxSi04/C cathode materials were synthesized by mechanical activation-solid-state reaction. The effects of Mn-doping content, roasting temperature, soaking time and Li/Si molar ratio on the physical properties and electrochemical performance of the Li2Fe1−xMnxSi04/C composites were investigated. The materials were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM), charge-discharge tests and AC impedance measurements. SEM images suggest that the morphology of the Li2Fe1−xMnxSi04/C composite is sensitive to the reaction temperature. Samples synthesized at different temperatures have different extent of agglomeration. Being charged-discharged at C/32 between 1.5 and 4.8 V, the Li2Fe0.9Mn0.1Si04/C synthesized at the optimum conditions shows good electrochemical performances with an initial discharge capacity of 158.1 mAh g−1 and a capacity retention ratio of 94.3% after 30 cycles. AC impendence investigation shows Li2Fe0.9Mn0.1SiO4/C have much lower resistance of electrode/electrolyte interface than Li2FeSiO4/C.  相似文献   

16.
The Mg-Zn interaction effect of KyMg1 − xZn1 + xO3 heterogeneous type catalyst and its performance on transesterification of palm oil have been studied using the response surface methodology and the factorial design of experiments. The catalyst was synthesized using the co-precipitation method and the activity was assessed by transesterification of palm oil into fatty acid methyl esters. The ratio of the Mg/Zn metal interaction, temperature and time of calcination were found to have positive influence on the conversion of palm oil to fatty acid methyl ester (FAME) with the effect of metal to metal ratio and temperature of calcination being more significant. The catalytic activity was found to decrease at higher calcination temperature and the catalyst type K2Mg0.34Zn1.66O3 with Mg/Zn ratio of 4.81 gave FAME content of 73% at a catalyst loading of 1.404 wt.% of oil with molar ratio of methanol to oil being 6:1 at temperature of 150 °C in 6 h. A regression model was obtained to predict conversions to methyl esters as a function of metal interaction ratio, temperature of calcination and time. The observed activity of the synthesized catalyst was due to its synergetic structure and composition.  相似文献   

17.
The structure and electrochemical properties of LiNixMn2−xO4 cathode materials for lithium ion batteries were studied by the means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), cyclic voltammetry, and galvanostatic charge-discharge tests. The cathodes with different Ni contents (LiNixMn2−xO4, x = 0.1, 0.2, 0.3, 0.4, and 0.5) were synthesized by a spray-drying method and showed a single-phase spinel structure without any impurity. The amount of Ni has a large effect on the electrochemical characteristics. Capacity values of different voltage ranges (4- and 5-V ranges) change obviously with amount of Ni-doped. Also, the total discharge capacities increase with the Ni content, and all of them have good cycle stability.  相似文献   

18.
Spherical Li[Ni0.4Co0.2Mn(0.4−x)Mgx]O2−yFy (x = 0, 0.04, y = 0, 0.08) with phase-pure and well-ordered layered structure have been synthesized by heat-treatment of spherical [Ni0.4Co0.2Mn0.4−xMgx]3O4 precursors with LiOH·H2O and LiF salts. The average particle size of the powders was about 10-15 μm and the size distribution was quite narrow due to the homogeneity of the metal carbonate, [Ni0.4Co0.2Mn(0.4−x)Mgx]CO3 (x = 0, 0.04) precursors. Although the Li[Ni0.4Co0.2Mn0.36Mg0.04]O1.92F0.08 delivered somewhat slightly lower initial discharge capacity, however, the capacity retention, interfacial resistance, and thermal stability were greatly enhanced comparing to the Li[Ni0.4Co0.2Mn0.4]O2 and Li[Ni0.4Co0.2Mn0.36Mg0.04]O2.  相似文献   

19.
Several compositions of NdYb1−xGdxZr2O7 (0 ≤ x ≤ 1.0) ceramics were prepared by pressureless-sintering method at 1973 K for 10 h in air. The relative density, microstructure and electrical conductivity of NdYb1−xGdxZr2O7 ceramics were analyzed by the Archimedes method, X-ray diffraction, scanning electron microscopy and impedance plots measurements. NdYb1−xGdxZr2O7 (0 ≤ x ≤ 0.3) ceramics have a single phase of defect fluorite-type structure, and NdYb1−xGdxZr2O7 (0.7 ≤ x ≤ 1.0) ceramics exhibit a single phase of pyrochlore-type structure; however, the NdYb0.5Gd0.5Zr2O7 composition shows mixed phases of both defect fluorite-type and pyrochlore-type structures. The measured values of the grain conductivity obey the Arrhenius relation. The grain conductivity of each composition in NdYb1−xGdxZr2O7 ceramics gradually increases with increasing temperature from 673 to 1173 K. NdYb1−xGdxZr2O7 ceramics are oxide-ion conductor in the oxygen partial pressure range of 1.0 × 10−4 to 1.0 atm at all test temperature levels. The highest grain conductivity value obtained in this work is 1.79 × 10−2 S cm−1 at 1173 K for NdYb0.3Gd0.7Zr2O7 composition.  相似文献   

20.
The electrochemical behaviors of Bi(III), Te(IV), Sb(III) and their mixtures in DMSO solutions were investigated using cyclic voltammetry and linear sweep voltammetry measurements. On this basis, BixSb2−xTey film thermoelectric materials were prepared by potentiodynamic electrodeposition technique from mixed DMSO solution, and the compositions, structures, morphologies as well as the thermoelectric properties of the deposited films were also analyzed. The results show that BixSb2−xTey compound can be prepared in a very wide potential range by potentiodynamic electrodeposition technique in the mixed DMSO solutions. After anneal treatment, the deposited film prepared in the potential range of −200 to −400 mV shows the highest Seebeck coefficient (185 μV/K), the lowest resistivity (3.34 × 10−5 Ω m), the smoothest surface, the most compact structure and processes the stoichiometry (Bi0.49Sb1.53Te2.98) approaching to the Bi0.5Sb1.5Te3 ideal material most. This Bi0.49Sb1.53Te2.98 film is a kind of nanocrystalline material and (0 1 5) crystal plane is its preferred orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号