首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E.  G.  V. 《Sensors and actuators. B, Chemical》2000,70(1-3):108-114
We present some recent trends about research on gas sensors based on semiconducting thin films together with a discussion on the development of novel nanostructured materials such as TiO, TiO2, and WO3 in single phase or as mixed oxides. The films, deposited by RF reactive sputtering from a composite target of W and Ti at two different abundances, are investigated through scanning and transmission electron microscopy (SEM and TEM) techniques for structural characterisation and by volt-amperometric technique for electrical and gas-sensing properties. All of the layers were capable to sense NO2, no effect of poisoning of the surface was recorded, and recovery of the resistance was complete. A concentration as low as 0.5 ppm was detected with a relative change in the resistance ΔR/R about 1400% and as short a response time as 2 min. A detection limit lower than 100 ppb of NO2 is expected.  相似文献   

2.
The control of the technological steps such as calcination temperature and introduction of catalytic additives are accepted to be key points in the obtaining of improved sol–gel fabricated SnO2 thick film gas sensors with different sensitivity to NO2 and CO. In this work, after proving that the undoped material calcined at 1000°C is optimum for NO2 detection, grinding is added as third technological step for further modification of particle surface characteristics, allowing to reduce cross-sensitivity to CO. The influence of grinding on the base resistance and on the sensor signals to NO2 and CO is discussed in detail as a function of the structural differences of the sensing material.  相似文献   

3.
Thin films of Pb-naphthalocyanine (330 nm thick) prepared by vacuum sublimation were heat-treated at 250°C in air atmosphere for various periods. As estimated from the conductance versus temperature correlations, the adsorption of NO2 and O2 on the films at room temperature, which was only slight after the heat-treatment for 30 min, increased very remarkably with prolonging heat-treatment time up to 10 h. The 10 h treated film was found to exhibit completely reversible changes in conductance upon exposure to 5 ppm NO2 in N2 at 210°C. Visible light absorption spectra indicated a change from a largely amorphous state of the as-deposited film to a largely crystalline state of the film treated for 2 h. X-Ray diffraction analysis showed that the as-deposited film consisted of N-oriented particles, while the proportion of P-oriented particles increased with prolonging treatment time up to 10 h. The enhancement of gas adsorption was thus attributed to the reconstruction of films during the heat treatment. It appears that a reconstruction-assisted increase in porosity not only facilitates gas diffusion inside the film, but also increases the number of Pb-naphthalocyanine molecules accessible NO2 or O2.  相似文献   

4.
NO2 sensing properties of SnO2-based varistor-type sensors have been investigated in the temperature range of 400-650°C and in the NO2 concentration range of 15–30 ppm. Pure SnO2 exhibited a weak nonlinear IV characteristic in air, but clear nonlinearity in NO2 at 450°C. The breakdown voltage of SnO2 shifted to a high electric field upon exposure to NO2 and the magnitude of the shift was well correlated with NO2 concentration. Thus, SnO2 exhibited some sensitivity to NO2 as a varistor-type sensor. When SnO2 particles coated with a SiO2 thin film were used as a raw material for fabricating a varistor, the breakdown voltage in air was approximately the double that of pure SnO2 and the sensitivity to 15 ppm NO2 was enhanced slightly. However, the sensitivity to 30 ppm NO2 decreased. The Cr2O3-loading on SnO2 also led to an increase in the breakdown voltage in air, but the Cr2O3 addition was not effective for promoting the NO2 sensitivity under the present experimental conditions.  相似文献   

5.
LaFEO3 and CaxLa1−xFeO3 ceramic powders have been prepared by the coprecipitation method from La(NO3)3, Fe(NO3)3 and Ca(NO3)2 aqueous solutions. The orthorhombic perovskite phases of LaFeO3 and CaxLa1−xFeO3 are characterized by X-ray diffraction patterns. The sensors fabricated with those powders have high sensitivity to alcohol. Partial substitution of La3+ in LaFeO3 with Ca2+ can enhance the sensitivity of the materials to reducing gases. The resistance of an LaFeO3 sensor in air, vacuum and alcohol-containing air has been measured. Complex impedance spectroscopy has been used to try and analyse the gas-sensing mechanism. According to the experimental results, it can be deduced that the surface adsorptive and lattice oxygen govern the sensing properties of LaFeO3 and CaxLa1−xFeO3 ceramics.  相似文献   

6.
Flexural In2O3 nanowires with high aspect ratios were synthesized via a hydrothermal–annealing route. The as-synthesized In2O3 nanowires had diameters of 30–50 nm and length up to several microns. Various reaction parameters, such as the kind of reagents, the time of hydrothermal treatment, annealing time and annealing temperature, were investigated by a series of control experiments. The as-synthesized In2O3 nanowires showed excellent gas-sensing properties to NO2 in terms of sensor response and selectivity.  相似文献   

7.
G.  S.  M.  A.  G.   《Sensors and actuators. B, Chemical》2008,131(2):496-503
Copper phthalocyanine (CuPc) thin films have been deposited by glow discharge-induced sublimation (GDS). This physical technique allows to produce very high porosity films, whose response to gases is much more intense than evaporated films. It has been found that both electrical and optical properties of these films change upon gas exposure due to the gas/film interaction. Electrical response of the films has been tested by exposing the samples to NOx-containing atmospheres and by measuring the slope of the electrical surface current versus gas concentration. This way NO2 and NO concentrations down to 0.1 ppm and 10 ppm have been measured, respectively, with response times shorter than 2 min. Optical responses have been tested by measuring the change of light reflectance at a fixed wavelength upon exposure to ethanol-containing atmospheres down to concentrations of few thousands of ppm. Response times of less than 10 s have been obtained.  相似文献   

8.
Zinc oxide (ZnO) is a well-known semiconducting multifunctional material wherein properties right from the morphology to gas sensitivity can be tailor-made by doping or surface modification. Aluminum (Al)-incorporated porous zinc oxide (Al:ZnO) exhibits good response towards NO2 at low-operating temperature. The NO2 gas concentration as low as 20 ppm exhibits S = 17% for 5 wt.% Al-incorporated ZnO. The NO2 response increases with operating temperature and concentration and reaches to its maximum at 300 °C without any interference from other gases such as SO3, HCl, LPG and alcohol. Physico-chemical characterization likes differential thermogravimetric analysis (TG-DTA) electron paramagnetic resonance (EPR) and diffused reflectance spectroscopy (DRS) have been used to understand the sensing behavior for pure and Al-incorporated ZnO. The TG-DTA depicts formation of ZnO phase at 287 °C. The EPR study reveals distinct variation for O (g = 2.003) and Zn interstitial (g = 1.98) defect sites in pure and Al:ZnO. The DRS studies elucidate signature of adsorbed NOx species in aluminium-incorporated zinc oxide indicating its tendency to adsorb these species even at low temperatures. This paper is an attempt to correlate the gas sensing behavior with the physico-chemical studies such as EPR and DRS.  相似文献   

9.
M.  E.  M.B.  A.  L. 《Sensors and actuators. B, Chemical》1997,40(2-3):205-209
Polypyrrole thin films have been deposited onto a glass substrate by the Langmuir-Blodgett technique to fabricate a selective ammonia (NH3) gas sensor. The d.c. electrical resistance of the sensing elements is found to exhibit a specific increase upon exposure to different gases such as NH3, CO, CH4, H2 in N2 and pure O2. The polypyrrole thin-film detector shows a considerable increase of resistance when exposed to NH3 in N2, and negligible response when exposed to comparable concentrations of interfering gases such as CO, CH4, H2 in N2 and pure O2. The calibration curve for NH3 in N2 at room temperature is measured in the concentration range from 0.01 to 1%. The relative change of the electrical resistance is about 10% for the lower detectable limit of 100 ppm of NH3 in N2. The sensitivity of the Langmuir-Blodgett polypyrrole towards ammonia is considerably higher than that of the electrochemical polypyrrole. The fast rise time and the high sensitivity of the detector are reported as a function of number of the polypyrrole layers. Long-term aging tests of the selective NH3 gas sensor are performed.  相似文献   

10.
In this paper, ammonia-sensing behavior of barium strontium titanate (BST) thin films have been reported for the first time. Thin films of BST deposited by sol–gel spin coating technique have been found to show an increase in resistance when exposed to ammonia gas. The sensitivity variation was from 20 to 60%, with lowest detection limit of about 160 ppm. The films were prepared with different pre-sintering temperatures and thickness and effect of these parameters on the ammonia-sensing have been studied. The optimum temperature for operation was found to be close to 270 °C. The ammonia-sensing studies were also performed for other gases like ethanol, NO2 and CO; but the sensitivity in these cases was negligibly smaller than that in case of ammonia.  相似文献   

11.
Thin films of Y2O3 : Eu cathodoluminescent (CL) phosphors were deposited using pulsed laser deposition using deposition temperature between 250°C and 800°C, O2 pressures between residual vacuum (2×10−5 Torr) and 6 Torr, and post annealing up to 1200° for 1 h in air. The CL efficiency of the best thin film was about one third that of the starting powder. The brightness and efficiency of the thin films improved as the deposition temperature, O2 pressure and post annealing temperature were increased, except that O2 pressures above 600 mTorr did not significantly improve the CL properties. At deposition temperatures >600°C, the surface morphology changed from a smooth film to a nodular deposit for O2 pressures >200 mTorr, with nodule dimensions ≈100 nm. Simultaneously, the CL properties improved dramatically because of enhanced optical scattering out of the thin film. Optical scattering was discussed in terms of anomalous diffraction. The CL properties also improved dramatically with high temperature post annealing. This effect was interpreted in terms of improved crystallinity and activation of the Eu. The low brightness and efficiency of thin films versus powder was affected by depletion of the Eu in the thin films owing to the deposition process.  相似文献   

12.
A surface acoustic wave (SAW) piezoelectric device with a dual-path SAW delay line oscillator configuration has been developed to detect nitrogen dioxide (NO2) gas. One delay line is coated with a Langmuir-Blodgett (LB) film of copper tetrasulphonated phthalocyanine (CuTsPc), while the other is uncoated. NO2 gas can be selectively abosorbed by the CuTsPc LB film and then alters the SAW characteristics, which in turn causes the oscillation frequency to change. The concentration of NO2 can be detected by measuring the relative change in the frequency of the two oscillators. The CuTsPc LB film-coated SAW device has been demonstrated to be sensitive to low concentrations of NO2 gas. There is a linear relationship between NO2 concentration and frequency change under 12 ppm NO2 concentration. The sensitivity of the device is about 128 Hz/ppm NO2. The response time is 10 min, and the recovery is 40 min. It can be applied as a small, inexpensive and sensitive NO2 gas sensor.  相似文献   

13.
The paper reports the successful fabrication of ethanol gas sensors with tin-dioxide (SnO2) thin films integrated with a solid-state heater, which is realized with technologies of micro-electro-mechanical systems (MEMS), and are compatible with VLSI processes. The main sensing part with dimensions of 450×400 μm2 in this developed device is composed of a sensing SnO2 film, which is fabricated by electron-gun evaporation with proper annealing in ambient oxygen gas to yield fine particles and good structure. An integrated solid-state heater with a 4.5 μm-thick cantilever bridge (1000×500 μm2) structure is made of silicon carbide (SiC) material by MEMS technologies. The sensitivity for 1000 ppm ethanol gas reaches as high as 90 with 10 s and 2 min for the response and recovery time, respectively, at an operating temperature of 300°C. Those experimental results also exhibit a much superior performance to that of a popular commercial ethanol gas sensor TGS-822. Therefore, the developed sensor with high performance is a good candidate for some specific application in automobile to detect drink-drive limit and allows an array integration available with various films for controlling each element at separate resistance.  相似文献   

14.
R.R.  N.G.  Y.G.  A.A.  S.D.  D.M.  Ramphal   《Sensors and actuators. A, Physical》2007,140(2):207-214
Thin films of CdS, Bi2S3 and composite CdS–Bi2S3 have been deposited using modified chemical bath deposition (M-CBD) technique. The various preparative parameters were optimized to obtain good quality thin films. The as-deposited films of CdS, Bi2S3 and composite were annealed in Ar gas at 573 K for 1 h. A comparative study was made for as-deposited and annealed CdS, Bi2S3 and composite thin films. Annealing showed no change in crystal structure of these as-deposited films. However, an enhancement in grain size was observed by AFM studies. In addition change in band gap with annealing was seen. A study of spectral response, photosensitivity showed that the films can be used as a photosensor.  相似文献   

15.
Potentiometric cell, Au/LiCoO2 5 m/o Co3O4/Li2.88PO3.73N0.14/Li2CO3/Au, has been fabricated and investigated for monitoring CO2 gas. A LiCoO2–Co3O4 mixture was used as the solid-state reference electrode instead of a reference gas. The idea is to keep the lithium activity constant on the reference side using thermodynamic equilibrium at a given temperature. The thermodynamic stability of the reference electrode was studied from the phase stability diagram of Li–Co–C–O system. The Gibb’s free energy of formation of LiCoO2 was estimated at 500°C from the measured value of the cell emf. The sensors showed good reversibility and fast response toward changing CO2 concentrations from 200 to 3000 ppm. The emf values were found to follow a logarithmic Nernstian behavior in the 400–500°C temperature range. CH4 gas did not show any interference effect. Humidity and CO gas decreased the emf values of the sensor slightly. NO and NO2 gases affect this sensor significantly at low temperatures. However, increased operating temperature seems to reduce the interference.  相似文献   

16.
The fast response of undoped and Li-doped TiO2 operating at low temperature to hydrogen and oxygen is investigated. The TiO2 sensors are fabricated using thick-film technique. The prepared materials exhibit the presence of only rutile phase of TiO2 but enlarged crystal lattice parameters were confirmed by X-ray diffraction (XRD). Scanning electron microscopy (SEM) shows that the grain size of the material has not obviously changed with different Li-doping (2–4 mol%), but the undoped is much smaller. Kroger–Vink model indicates that Li mainly substitutes for the lattice point of Ti. Because the material resistance decreases as the oxygen pressure increases, Li-doped samples can be regarded as a p-type semiconductor compared with pure TiO2. The operating temperature of the Li-doped TiO2 samples is found to be lower than that of pure TiO2 in H2 and O2 environment. At less than 3 mol% Li content, the response time of the Li-doped TiO2 gas sensors is much shorter than that of pure TiO2, at the same temperature under both H2 and O2 environment. Moreover, the sample of 3 mol% Li-doping exhibits the best response characteristics. The response mechanism is suggested to arise from the conduction holes ionized by Li and the surface potential barrier change in different gas environments.  相似文献   

17.
Ultrafine SmFe0.7Co0.3O3 powder, prepared by a sol–gel method, shows a single-phase orthogonal perovskite structure. The influence of annealing temperature upon its crystal cell volume, microstructure, electrical and ethanol-sensing properties was investigated in detail. When the annealing temperature increases from 600 to 950 °C, the unit cell volume of the SmFe0.7Co0.3O3 sample reduces, and its average grain size increases. When the annealing temperature increases from 600 to 850 °C, the optimal working temperature and response to ethanol of the SmFe0.7Co0.3O3 sensor increase, and the response–recovery time shortens. But when the annealing temperature further increases from 850 to 950 °C, there are decreases of the optimal working temperature and sensor response, and the response–recovery time is prolonged. The results indicate that, as for sensor response, its optimal annealing temperature is about 850 °C, and the sensor based on SmFe0.7Co0.3O3 annealed at 850 °C shows the highest response S = 80.8 to 300 ppm ethanol gas, and it has the best response–recovery and selectivity characteristics. When the ethanol concentration is as low as 500 ppm, the curve of its optimal response versus concentration is nearly linear. Meanwhile, the influence mechanisms of annealing temperature upon the conductance, the optimal working temperature and sensor response for SmFe0.7Co0.3O3 were studied.  相似文献   

18.
The preparation method and the sensing properties (sensitivity and selectivity to interfering gases) towards carbon monoxide of the new ternary compound Sn1-xFexOy deposited in the form of thin films, are presented in this paper. The metal of the VIIIB group is introduced with concentrations in the range 0<x<25 at %. Thin films are sputtered using the RGTO (rhotaxial growth and thermal oxidation) technique. This technique consists of metal deposition onto a substrate maintained at a temperature higher than the metal melting point and metal oxidation by means of an annealing cycle in pure oxygen. Particular emphasis is given to the relations between some preparation parameters of the material, namely the atomic percentage ofiron or the annealing cycle, and to the sensor sensitivity towards CO and other interfering gases like C2H5OH, H2 and NOx diluted in dry air. A sensitivity S=(Ggas-Gair)/Gair=3.5 towards 10 ppm of CO has been measured: the kinetic characteristics of the sensors are also presented, together with the working mechanism.  相似文献   

19.
Abstract— Coatings of indium tin oxide (ITO) nanoparticles on different flexible polymer substrates were investigated with respect to the achievable sheet resistance and their electrical behavior under oscillatory bending. As substrate materials, polyethyleneterephthalate (PET), polyethylenenaphthalate (PEN), polyetheretherketone (PEEK), and polyimide (PI) were chosen, the surface resistances on the different polymer substrates were compared as a function of annealing temperature and surface topography. The surface topography, which has a strong influence on the surface resistance, was characterized by means of a white‐light confocal (WL‐CF) microscope. On the PET substrate, which exhibits the smoothest surface, the coating of ITO nanoparticles shows the lowest sheet resistance of 2 kΩ/□ for a layer thickness of 3 μm and an annealing temperature of 200°C. Furthermore, the electrical behavior of coatings of ITO nanoparticles under oscillatory bending was investigated using a special device. These coatings show a cyclic change of the conductivity which can be explained by an alternating compression and extension of crack flanks under the applied stress. Due to the growing number of cracks with increasing number of cycles, a decrease of the conductivity is observed in the bent state as well as in the balanced state. For a small bending radii, the decrease of the conductivity is stronger due to more cracks caused by the higher tensile stresses in the layer. The electrical behavior of the coatings of the annealed ITO nanoparticles on PET films under oscillatory bending was compared with commercially available sputtered ITO coatings. The annealed coatings of ITO nanoparticles demonstrate better electrical properties under oscillatory bending than coatings of sputtered ITO. The different electrical behavior under oscillatory bending can be related to differences in crack formation.  相似文献   

20.
Characterization of porous poly-silicon as a gas sensor   总被引:4,自引:0,他引:4  
A.  F.  M.  M.M. 《Sensors and actuators. B, Chemical》2004,100(3):341-346
Porous poly-silicon (PPS) is a cheaper alternative to single crystal porous silicon and is a favorable choice for making gas sensors. In this study, porous poly-silicon samples were prepared using different HF concentrations and the structural and gas-sensing properties were studied. The topography of the surface was investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The variation of electrical conductivity of the samples in the presence of dry air-diluted acetone, ethanol and methanol showed that for a constant etching current, the sensitivity was highest for samples prepared in 13% HF solution. The structure of the films in the optimum HF concentration is micrometer-sized islands with nanopores inside. The IV curve varies in the presence of ethanol when the tip of STM is positioned on the islands. It was revealed that the sensitivity of samples annealed in air and samples boiled in CCl4 decrease strongly. XPS data showed that the surface of the sample after boiling in CCl4 is partially oxidized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号